Parameter estimation using neural networks in the presence of detector effects

被引:13
作者
Andreassen, Anders [1 ]
Hsu, Shih-Chieh [2 ]
Nachman, Benjamin [3 ,4 ]
Suaysom, Natchanon [2 ]
Suresh, Adi [3 ,5 ]
机构
[1] Google, Mountain View, CA 94043 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
SIMULATION;
D O I
10.1103/PhysRevD.103.036001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Histogram-based template fits are the main technique used for estimating parameters of high energy physics Monte Carlo generators. Parametrized neural network reweighting can be used to extend this fitting procedure to many dimensions and does not require binning. If the fit is to be performed using reconstructed data, then expensive detector simulations must be used for training the neural networks. We introduce a new two-level fitting approach that only requires one dataset with detector simulation and then a set of additional generation-level datasets without detector effects included. This simulation-level fit based on reweighting generator-level events with neural networks (SRGN) is demonstrated using simulated datasets for a variety of examples including a simple Gaussian random variable, parton shower tuning, and the top quark mass extraction.
引用
收藏
页数:14
相关论文
共 69 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks [J].
Ahdida, C. ;
Albanese, R. ;
Alexandrov, A. ;
Anokhina, A. ;
Aoki, S. ;
Arduini, G. ;
Atkin, E. ;
Azorskiy, N. ;
Back, J. J. ;
Bagulya, A. ;
Dos Santos, F. Baaltasar ;
Baranov, A. ;
Bardou, F. ;
Barker, G. J. ;
Battistin, M. ;
Bauche, J. ;
Bay, A. ;
Bayliss, V ;
Bencivenni, G. ;
Berdnikov, A. Y. ;
Berdnikov, Y. A. ;
Berezkina, I ;
Bertani, M. ;
Betancourt, C. ;
Bezshyiko, I ;
Bezshyyko, O. ;
Bick, D. ;
Bieschke, S. ;
Blanco, A. ;
Boehm, J. ;
Bogomilov, M. ;
Bondarenko, K. ;
Bonivento, W. M. ;
Borburgh, J. ;
Boyarsky, A. ;
Brenner, R. ;
Breton, D. ;
Brundler, R. ;
Bruschi, M. ;
Bscher, V ;
Buonaura, A. ;
Buontempo, S. ;
Cadeddu, S. ;
Calcaterra, A. ;
Calviani, M. ;
Campanelli, M. ;
Casolino, M. ;
Charitonidis, N. ;
Chau, P. ;
Chauveau, J. .
JOURNAL OF INSTRUMENTATION, 2019, 14 (11)
[3]  
Andreassen A., 2020, SRGN PYTHIA THORN DE, DOI [10.5281/zenodo.4067673, DOI 10.5281/ZENODO.4067673]
[4]  
Andreassen A. J., 2019, **DATA OBJECT**, DOI [10.5281/zenodo.3518708, DOI 10.5281/ZENODO.3518708]
[5]   Neural networks for full phase-space reweighting and parameter tuning [J].
Andreassen, Anders ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2020, 101 (09)
[6]   OmniFold: A Method to Simultaneously Unfold All Observables [J].
Andreassen, Anders ;
Komiske, Patrick T. ;
Metodiev, Eric M. ;
Nachman, Benjamin ;
Thaler, Jesse .
PHYSICAL REVIEW LETTERS, 2020, 124 (18)
[7]   Simulation assisted likelihood-free anomaly detection [J].
Andreassen, Anders ;
Nachman, Benjamin ;
Shih, David .
PHYSICAL REVIEW D, 2020, 101 (09)
[8]  
[Anonymous], ARXIV 1403 4427
[9]  
[Anonymous], 2015, ACS SYM SER
[10]  
ATLAS Collaboration, 2018, CERN REPORT NO ATLSO