Complexiton solutions to the Korteweg-de Vries equation

被引:306
作者
Ma, WX [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
KdV equation; Schrodinger spectral problem; Wronskian determinants; solitons; positons; complexitons;
D O I
10.1016/S0375-9601(02)00971-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of now type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [41] Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
    Besse, C.
    Ehrhardt, M.
    Lacroix-Violet, I.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1455 - 1484
  • [42] Interactions and asymptotics of dispersive shock waves Korteweg-de Vries equation
    Ablowitz, Mark J.
    Baldwin, Douglas E.
    PHYSICS LETTERS A, 2013, 377 (07) : 555 - 559
  • [43] Solving unsteady Korteweg-de Vries equation and its two alternatives
    Khan, Kamruzzaman
    Akbar, M. Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2752 - 2760
  • [44] On the oscillatory tails with arbitrary phase shift for solutions of the perturbed Korteweg-de Vries equation
    Sun, SM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) : 1163 - 1177
  • [45] Single-peak solitary wave solutions for the generalized Korteweg-de Vries equation
    Ma, Lilin
    Li, Hong
    Ma, Jun
    NONLINEAR DYNAMICS, 2015, 79 (01) : 349 - 357
  • [46] Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation
    Wang, Xin
    Zhang, Jianlin
    Wang, Lei
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1507 - 1516
  • [47] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [48] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [49] Backlund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation
    Dong, Suyalatu
    Lan, Zhong-Zhou
    Gao, Bo
    Shen, Yujia
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [50] Numerical conservation issues for the stochastic Korteweg-de Vries equation
    D'Ambrosio, Raffaele
    Di Giovacchino, Stefano
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424