Complexiton solutions to the Korteweg-de Vries equation

被引:306
|
作者
Ma, WX [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
KdV equation; Schrodinger spectral problem; Wronskian determinants; solitons; positons; complexitons;
D O I
10.1016/S0375-9601(02)00971-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of now type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [21] Generalized inversion of the Korteweg-de Vries equation
    Muccino, JC
    Bennett, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2002, 35 (03) : 227 - 263
  • [22] Nanopteron solution of the Korteweg-de Vries equation
    Wang, Jianyong
    Tang, Xiaoyan
    Lou, Senyue
    Gao, Xiaonan
    Jia, Man
    EPL, 2014, 108 (02)
  • [23] Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
    Fei, Jin-Xi
    Cao, Wei-Ping
    Ma, Zheng-Yi
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (03): : 217 - 222
  • [24] Periodic and almost periodic solutions for the damped Korteweg-de Vries equation
    Chen, Mo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7554 - 7565
  • [25] Blow-up of smooth solutions of the Korteweg-de Vries equation
    Pohozaev, Stanislav I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4688 - 4698
  • [26] On the nonexistence of global solutions of the Cauchy problem for the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2012, 46 (04) : 279 - 286
  • [27] Weak damping for the Korteweg-de Vries equation
    Capistrano-Filho, Roberto De A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (43) : 1 - 25
  • [28] Solutions of coupled Korteweg-de Vries systems
    Loris, I
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (03) : 662 - 665
  • [29] Discrete Negative Order Potential Korteweg-de Vries Equation
    Zhao, Song-lin
    Sun, Ying-ying
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (12): : 1151 - 1158
  • [30] Limit symmetry of the Korteweg-de Vries equation and its applications
    Zhang, Da-jun
    Zhang, Jian-bing
    Shen, Qing
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 163 (02) : 634 - 643