Complexiton solutions to the Korteweg-de Vries equation

被引:306
|
作者
Ma, WX [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
KdV equation; Schrodinger spectral problem; Wronskian determinants; solitons; positons; complexitons;
D O I
10.1016/S0375-9601(02)00971-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of now type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [11] The stochastic Korteweg-de Vries equation on a bounded domain
    Gao, Peng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 97 - 111
  • [12] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    TECHNICAL PHYSICS, 2024, : 2336 - 2338
  • [13] INTEGRABLE ABEL EQUATION AND ASYMPTOTICS OF SYMMETRY SOLUTIONS OF KORTEWEG-DE VRIES EQUATION
    Suleimanov, B., I
    Shavlukov, A. M.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 99 - 106
  • [14] APPROXIMATE ANALYTICAL SOLUTIONS OF GENERALIZED FRACTIONAL KORTEWEG-DE VRIES EQUATION
    Deng, Shuxian
    Deng, Zihao
    THERMAL SCIENCE, 2023, 27 (3A): : 1873 - 1879
  • [15] Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation
    Hu, Xiao-Rui
    Lou, Sen-Yue
    Chen, Yong
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [16] MSPRK Methods for the Korteweg-de Vries Equation
    张凯
    刘宏宇
    张然
    NortheasternMathematicalJournal, 2005, (04) : 387 - 390
  • [17] CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL
    Cerpa, Eduardo
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) : 45 - 99
  • [18] On exact solutions of a coupled Korteweg-de Vries system
    Yang, Xu-Dong
    Ruan, Hang-Yu
    Lou, Sen Yue
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 353 - 367
  • [19] On the nonexistence of global solutions of the Cauchy problem for the Korteweg-de Vries Equation
    S. I. Pokhozhaev
    Functional Analysis and Its Applications, 2012, 46 : 279 - 286
  • [20] COMPACT SCHEMES FOR KORTEWEG-DE VRIES EQUATION
    Yin, Xiu-Ling
    Zhang, Cheng-Jian
    Zhang, Jing-Jing
    Liu, Yan-Qin
    THERMAL SCIENCE, 2017, 21 (04): : 1797 - 1806