Complexiton solutions to the Korteweg-de Vries equation

被引:306
|
作者
Ma, WX [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
KdV equation; Schrodinger spectral problem; Wronskian determinants; solitons; positons; complexitons;
D O I
10.1016/S0375-9601(02)00971-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of now type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [1] The complexiton solutions to the nonisospectral Korteweg-de Vries equation
    Deng, Shu-fang
    Qin, Zhen-yun
    PHYSICS LETTERS A, 2008, 372 (33) : 5436 - 5441
  • [2] Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
    Ma, WX
    CHAOS SOLITONS & FRACTALS, 2005, 26 (05) : 1453 - 1458
  • [3] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354
  • [4] Nonsingular travelling complexiton soloutions to a coupled korteweg-de vries equation
    Yang Xu-Dong
    Ruan Hang-Yu
    Lou Sen-Yue
    CHINESE PHYSICS LETTERS, 2008, 25 (03) : 805 - 808
  • [5] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [6] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [7] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [8] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236
  • [9] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [10] Quasiperiodic solutions of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 235 - 236