Complexiton solutions to the Korteweg-de Vries equation

被引:314
作者
Ma, WX [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
KdV equation; Schrodinger spectral problem; Wronskian determinants; solitons; positons; complexitons;
D O I
10.1016/S0375-9601(02)00971-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of now type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 18 条
[1]   SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS [J].
ABLOWITZ, MJ ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2180-2186
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[3]  
Arkad'ev V. A., 1984, ZAP NAUCHN SEMIN LOM, V133, P17
[4]   A KDV SOLITON PROPAGATING WITH VARYING VELOCITY [J].
AU, C ;
FUNG, PCW .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (05) :1364-1369
[5]  
Drazin P.G., 1989, SOLITONS INTRO
[6]  
Faddeev LP, 1971, FUNCT ANAL APPL, V5, P280, DOI [10.1007/BF01086739, DOI 10.1007/BF01086739]
[7]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[8]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[10]   Basic motions of the Korteweg-de Vries equation [J].
Kovalyov, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) :599-619