A Conformally Invariant Gap Theorem in Yang-Mills Theory

被引:6
作者
Gursky, Matthew [1 ]
Kelleher, Casey Lynn [2 ]
Streets, Jeffrey [3 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
基金
美国国家科学基金会;
关键词
RIEMANNIAN-MANIFOLDS; YAMABE PROBLEM; 4; DIMENSIONS; ENERGY-GAP; FIELDS; CONNECTIONS; CURVATURE; EQUATIONS; 4-MANIFOLDS; FLOW;
D O I
10.1007/s00220-017-3070-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show a sharp conformally invariant gap theorem for Yang-Mills connections in dimension 4 by exploiting an associated Yamabe-type problem.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 50 条
[41]   An L2-isolation theorem for Yang-Mills fields on Kahler surfaces [J].
Huang, Teng .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 :263-270
[42]   Non-Abelian Vortices, Super Yang-Mills Theory and Spin(7)-Instantons [J].
Popov, Alexander D. .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (03) :253-268
[43]   From Decay to Complete Breaking: Pulling the Strings in SU(2) Yang-Mills Theory [J].
Pepe, M. ;
Wiese, U. -J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[44]   Symmetry defects and orbifolds of two-dimensional Yang-Mills theory [J].
Mueller, Lukas ;
Szabo, Richard J. ;
Szegedy, Lorant .
LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
[45]   Renormalization in a Landau-to-Coulomb interpolating gauge in Yang-Mills theory [J].
Andrasi, A. ;
Taylor, J. C. .
ANNALS OF PHYSICS, 2021, 431
[46]   The Toda system and solution to the N=2 SUSY Yang-Mills theory [J].
Gorsky, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (30)
[47]   Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory [J].
Brandhuber, Andreas ;
Kostacinska, Martyna ;
Penante, Brenda ;
Travaglini, Gabriele .
PHYSICAL REVIEW LETTERS, 2017, 119 (16)
[48]   Null Hamiltonian Yang-Mills theory: Soft Symmetries and Memory as Superselection [J].
Riello, A. ;
Schiavina, M. .
ANNALES HENRI POINCARE, 2025, 26 (02) :389-477
[49]   Energy estimates of Yang-Mills functional [J].
Huang, Teng .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2025, 17 (03) :681-692
[50]   Minimizers of a generalized Yang-Mills functional [J].
Gherghe, Catalin .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03) :307-309