A Conformally Invariant Gap Theorem in Yang-Mills Theory

被引:6
|
作者
Gursky, Matthew [1 ]
Kelleher, Casey Lynn [2 ]
Streets, Jeffrey [3 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
基金
美国国家科学基金会;
关键词
RIEMANNIAN-MANIFOLDS; YAMABE PROBLEM; 4; DIMENSIONS; ENERGY-GAP; FIELDS; CONNECTIONS; CURVATURE; EQUATIONS; 4-MANIFOLDS; FLOW;
D O I
10.1007/s00220-017-3070-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show a sharp conformally invariant gap theorem for Yang-Mills connections in dimension 4 by exploiting an associated Yamabe-type problem.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 50 条
  • [1] An Energy Gap for Complex Yang-Mills Equations
    Huang, Teng
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [2] Generalization of the Yang-Mills theory
    Savvidy, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [3] Classical Yang-Mills theory
    Boozer, A. D.
    AMERICAN JOURNAL OF PHYSICS, 2011, 79 (09) : 925 - 931
  • [4] Elliptic Yang-Mills flow theory
    Janner, Remi
    Swoboda, Jan
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 935 - 967
  • [5] Bootstrap for lattice Yang-Mills theory
    Kazakov, Vladimir
    Zheng, Zechuan
    PHYSICAL REVIEW D, 2023, 107 (05)
  • [7] Yang-Mills theory from the worldsheet
    Adamo, Tim
    Casali, Eduardo
    Nekovar, Stefan
    PHYSICAL REVIEW D, 2018, 98 (08):
  • [8] Singularity formation of the Yang-Mills Flow
    Kelleher, Casey
    Streets, Jeffrey
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (06): : 1655 - 1686
  • [9] Renormalization in an interpolating gauge in Yang-Mills theory
    Andrasi, A.
    Taylor, J. C.
    ANNALS OF PHYSICS, 2020, 422
  • [10] Pregeometric first order Yang-Mills theory
    Gallagher, Priidik
    Koivisto, Tomi
    Marzola, Luca
    PHYSICAL REVIEW D, 2022, 105 (12)