On closures of discrete sets

被引:0
|
作者
Spadaro, Santi [1 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, Citta Univ, Viale A Doria 6, I-95125 Catania, Italy
关键词
Primary; Secondary; Cardinal inequality; Lindelof; discrete set; depth; elementary submodel; SUBSPACES;
D O I
10.2989/16073606.2019.1617364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The depth of a topological space X (g(X)) is defined as the supremum of the cardinalities of closures of discrete subsets of X. Solving a problem of Martinez-Ruiz, Ramirez-Paramo and Romero-Morales, we prove that the cardinal inequality |X| <= g(X)(L)((X)) (F)((X)) holds for every Hausdorff space X, where L(X) is the Lindeloof number of X and F (X) is the supremum of the cardinalities of the free sequences in X.
引用
收藏
页码:717 / 720
页数:4
相关论文
共 50 条