Existence of the exact CNOT on a quantum computer with the exchange interaction

被引:10
作者
Kawano, Y.
Kimura, K.
Sekigawa, H.
Noro, M.
Shirayanagi, K.
Kitagawa, M.
Ozawa, M.
机构
[1] NTT Corp, Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan
[2] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[3] Kobe Univ, Dept Math, Nada Ku, Kobe, Hyogo 6578501, Japan
[4] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[5] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
quantum computation; decoherence-free subsystem; computer algebra; Grobner basis; resultant;
D O I
10.1007/s11128-005-4480-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prow the existence of the exact CNOT gate on a quantum computer with the nearest-neighbor exchange interaction in the serial operation mode. Its existence has been an open problem, though a concrete sequence of exchange operations, which is approximately locally equivalent to the exact CNOT has already been found. We found the exact values of time parameters (exchange rates between qubits) by using computer algebraic techniques such as Grobner bases and resultants. These techniques have been widely used for finding rigorous solutions of simultaneous algebraic equations, and here are applied to finding quantum gates on the decoherence-free subsystem for the first time.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 14 条
[1]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[2]   Universal fault-tolerant quantum computation on decoherence-free subspaces [J].
Bacon, D ;
Kempe, J ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1758-1761
[3]  
BACON D, 2003, THESIS UC BERKELEY
[4]  
Becker T., 1993, GROBNER BASES
[5]  
COX D, 1992, IDEALS VARIETIES ALG
[6]   Universal quantum computation with the exchange interaction [J].
DiVincenzo, DP ;
Bacon, D ;
Kempe, J ;
Burkard, G ;
Whaley, KB .
NATURE, 2000, 408 (6810) :339-342
[7]   An Explicit Universal Gate-set for Exchange-only Quantum Computation [J].
Hsieh, M. ;
Kempe, J. ;
Myrgren, S. ;
Whaley, K. B. .
QUANTUM INFORMATION PROCESSING, 2003, 2 (04) :289-307
[8]   Exact gate sequences for universal quantum computation using the XY interaction alone -: art. no. 052330 [J].
Kempe, J ;
Whaley, KB .
PHYSICAL REVIEW A, 2002, 65 (05) :6
[9]  
Kempe J, 2001, QUANTUM INF COMPUT, V1, P33
[10]   Theory of decoherence-free fault-tolerant universal quantum computation [J].
Kempe, J ;
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 2001, 63 (04) :1-29