Generalized Matlis duality

被引:20
作者
Belshoff, RG [1 ]
Enochs, EE
Rozas, JRG
机构
[1] SW Missouri State Univ, Dept Math, Springfield, MO 65804 USA
[2] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[3] Univ Almeria, Dept Algebra, Almeria 04120, Spain
关键词
Matlis; duality;
D O I
10.1090/S0002-9939-99-05130-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative noetherian ring and let E be the minimal injective cogenerator of the category of R-modules. A module M is said to be reflexive with respect to E if the natural evaluation map from M to Hom(R) (Hom(R) (M;E);E) is an isomorphism. We give a classification of modules which are reflexive with respect to E. A module M is reflexive with respect to E if and only if M has a finitely generated submodule S such that M/S is artinian and R/ann(M) is a complete semi-local ring.
引用
收藏
页码:1307 / 1312
页数:6
相关论文
共 9 条
[1]   SOME CHANGE OF RING THEOREMS FOR MATLIS REFLEXIVE MODULES [J].
BELSHOFF, R .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (09) :3545-3552
[2]  
CHENG FC, 1993, COMMUN ALGEBRA, V21, P1215
[3]   FLAT COVERS AND FLAT COTORSION MODULES [J].
ENOCHS, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (02) :179-184
[4]  
ENOCHS E, FINITELY GENERATED C
[5]  
GABRIEL P, 1959, SEMINARE DUBRIEL, V12
[6]   Matlis reflexive modules on complete rings [J].
Jara, P ;
Santos, E .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 106 (01) :77-91
[7]  
Matlis E., 1958, Pac. J. Math, V8, P511, DOI DOI 10.2140/PJM.1958.8.511
[8]   A GENERALIZED MATLIS DUALITY FOR CERTAIN TOPOLOGICAL RINGS [J].
NISHITANI, I .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (07) :2669-2676
[9]  
WANG J, 1993, J THERM STRESSES, V16, P1, DOI 10.1080/01495739308946213