Hot-wire chemical vapor deposition of silicon nanoparticles on fused silica

被引:4
作者
Salivati, Navneethakrishnan [1 ]
An, Yong Q. [2 ]
Downer, Michael C. [2 ]
Ekerdt, John G. [1 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Hot-wire deposition; Chemical vapor deposition; Silicon; Nanostructures; Silicon dioxide; Surface passivation; Scanning electron microscopy; Second harmonic generation; PULSED-LASER ABLATION; SI NANOCRYSTALS; 2ND-HARMONIC SPECTROSCOPY; OPTICAL-PROPERTIES; THIN-FILMS; SURFACE; HYDROGEN; PHOTOLUMINESCENCE; TEMPERATURE; DISILANE;
D O I
10.1016/j.tsf.2009.01.060
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon nanoparticles on fused silica have potential as recombination centers in infrared detectors due quantum confinement effects that result in a size dependent band gap. Growth on fused silica was realized by etching in HF, annealing under vacuum at 700-750 degrees C, and cooling to ambient temperature before ramping to the growth temperature of 600 degrees C. Silicon particles could not be grown in a thermal chemical vapor deposition (CVD) process with adequate size uniformity and density. Seeding fused silica with Si adatoms in a hot-wire chemical vapor deposition (HWCVD) process at a disilane pressure of 1.1 x 10(-5) Pa followed by thermal CVD at a disilane pressure of 1.3 x 10(-2) Pa, or direct HWCVD at a disilane pressure of 2.1 x 10(-5) Pa led to acceptable size uniformity and density. Dangling bonds at the surface of the as-grown nanoparticle were passivated using atomic H formed by cracking H-2 over the HWCVD filament, (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3481 / 3483
页数:3
相关论文
共 26 条
[1]   Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices [J].
Baron, T ;
Martin, F ;
Mur, P ;
Wyon, C ;
Dupuy, M .
JOURNAL OF CRYSTAL GROWTH, 2000, 209 (04) :1004-1008
[2]   Low-temperature LPCVD of Si nanocrystals from disilane and trisilane (Silcore®) embedded in ALD-alumina for non-volatile memory devices [J].
Brunets, I. ;
Aarnink, A. A. I. ;
Boogaard, A. ;
Kovalgin, A. Y. ;
Wolters, R. A. M. ;
Holleman, J. ;
Schmitz, J. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (22-23) :9209-9214
[3]   H-INDUCED SURFACE RESTRUCTURING ON SI(100) - FORMATION OF HIGHER HYDRIDES [J].
CHENG, CC ;
YATES, JT .
PHYSICAL REVIEW B, 1991, 43 (05) :4041-4045
[4]   Selective silicon nanoparticle growth on high-density arrays of silicon nitride [J].
Coffee, Shawn S. ;
Shahrjerdi, Davood ;
Banerjee, Sanjay K. ;
Ekerdt, John G. .
JOURNAL OF CRYSTAL GROWTH, 2007, 308 (02) :269-277
[5]   Second-harmonic spectroscopy of a Si(001) surface during calibrated variations in temperature and hydrogen coverage [J].
Dadap, JI ;
Xu, Z ;
Hu, XF ;
Downer, MC ;
Russell, NM ;
Ekerdt, JG ;
Aktsipetrov, OA .
PHYSICAL REVIEW B, 1997, 56 (20) :13367-13379
[6]   Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses -: art. no. 047401 [J].
Figliozzi, P ;
Sun, L ;
Jiang, Y ;
Matlis, N ;
Mattern, B ;
Downer, MC ;
Withrow, SP ;
White, CW ;
Mochán, WL ;
Mendoza, BS .
PHYSICAL REVIEW LETTERS, 2005, 94 (04)
[7]   Classification and control of the origin of photoluminescence from Si nanocrystals [J].
Godefroo, S. ;
Hayne, M. ;
Jivanescu, M. ;
Stesmans, A. ;
Zacharias, M. ;
Lebedev, O. I. ;
Van Tendeloo, G. ;
Moshchalkov, V. V. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :174-178
[8]   Hydrogen and disilane adsorption on low energy ion-roughened Si(100) [J].
Gong, B ;
Jo, S ;
Hess, G ;
Parkinson, P ;
Ekerdt, JG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1998, 16 (03) :1473-1477
[9]   Effects of surface passivation on silicon nanoparticle photoluminescence [J].
Harwell, DE ;
Croney, JC ;
Qin, WJ ;
Thornton, JT ;
Day, JH ;
Hajime, EK ;
Jameson, DM .
CHEMISTRY LETTERS, 2003, 32 (12) :1194-1195
[10]   Second-harmonic generation from silicon nanocrystals embedded in SiO2 [J].
Jiang, Y ;
Wilson, PT ;
Downer, MC ;
White, CW ;
Withrow, SP .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :766-768