Qudits and High-Dimensional Quantum Computing

被引:296
作者
Wang, Yuchen [1 ,2 ,3 ]
Hu, Zixuan [1 ,2 ,3 ]
Sanders, Barry C. [4 ]
Kais, Sabre [1 ,2 ,3 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
[4] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
quantum information; quantum computing; qudit gates; qudit algorithm; qudit implementation; EXPERIMENTAL REALIZATION; FOURIER-TRANSFORM; COMPUTATION; UNIVERSAL; SPIN; ALGORITHM; STATES; HYBRID; ENTANGLEMENT; CIRCUITS;
D O I
10.3389/fphy.2020.589504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Qudit is a multi-level computational unit alternative to the conventional 2-level qubit. Compared to qubit, qudit provides a larger state space to store and process information, and thus can provide reduction of the circuit complexity, simplification of the experimental setup and enhancement of the algorithm efficiency. This review provides an overview of qudit-based quantum computing covering a variety of topics ranging from circuit building, algorithm design, to experimental methods. We first discuss the qudit gate universality and a variety of qudit gates including the pi/8 gate, the SWAP gate, and the multi-level controlled-gate. We then present the qudit version of several representative quantum algorithms including the Deutsch-Jozsa algorithm, the quantum Fourier transform, and the phase estimation algorithm. Finally we discuss various physical realizations for qudit computation such as the photonic platform, iron trap, and nuclear magnetic resonance.
引用
收藏
页数:24
相关论文
共 165 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]   Quantum computation with coherent spin states and the close Hadamard problem [J].
Adcock, Mark R. A. ;
Hoyer, Peter ;
Sanders, Barry C. .
QUANTUM INFORMATION PROCESSING, 2016, 15 (04) :1361-1386
[3]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[4]   Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces [J].
Alber, G ;
Delgado, A ;
Gisin, N ;
Jex, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8821-8833
[5]   Adiabatic quantum optimization with qudits [J].
Amin, Mohammad H. S. ;
Dickson, Neil G. ;
Smith, Peter .
QUANTUM INFORMATION PROCESSING, 2013, 12 (04) :1819-1829
[6]   Qutrit magic state distillation [J].
Anwar, Hussain ;
Campbell, Earl T. ;
Browne, Dan E. .
NEW JOURNAL OF PHYSICS, 2012, 14
[7]   Design of magnetic coordination complexes for quantum computing [J].
Aromi, Guillem ;
Aguila, David ;
Gamez, Patrick ;
Luis, Fernando ;
Roubeau, Olivier .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :537-546
[8]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[9]   High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments [J].
Babazadeh, Amin ;
Erhard, Manuel ;
Wang, Feiran ;
Malik, Mehul ;
Nouroozi, Rahman ;
Krenn, Mario ;
Zeilinger, Anton .
PHYSICAL REVIEW LETTERS, 2017, 119 (18)
[10]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503