共 48 条
Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles
被引:16
作者:
Borase, Hemant P.
[1
]
Patil, Chandrashekhar D.
[1
]
Salunkhe, Rahul B.
[1
]
Suryawanshi, Rahul K.
[1
]
Salunke, Bipinchandra K.
[1
]
Patil, Satish V.
[1
,2
]
机构:
[1] North Maharashtra Univ, Sch Life Sci, Jalgaon 425001, Maharashtra, India
[2] North Maharashtra Univ, North Maharashtra Microbial Culture Collect Ctr N, Jalgaon 425001, Maharashtra, India
关键词:
Latex;
Silver nanoparticles;
Mercury sensor;
Toxicity;
Daphnia magna;
SERINE-PROTEASE;
GREEN SYNTHESIS;
EUPHORBIA-HETEROPHYLLA;
COLORIMETRIC DETECTION;
GOLD NANOPARTICLES;
MEDIATED SYNTHESIS;
PURIFICATION;
AU;
AG;
SENSOR;
D O I:
10.1007/s00449-014-1200-y
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Safe and eco-friendly alternatives to currently used hazardous chemico-physical methods of silver nanoparticles (AgNPs) synthesis are need of time. Rapid, low cost, selective detection of toxic metals in environmental sample is important to take safety action. Toxicity assessment of engineered AgNPs is essential to avoid its side effects on human and non-target organisms. In the present study, biologically active latex from Euphorbia heterophylla (Poinsettia) was utilized for synthesis of AgNPs. AgNPs was of spherical shape and narrow size range (20-50 nm). Occurrence of elemental silver and crystalline nature of AgNPs was analyzed. Role of latex metabolites in reduction and stabilization of AgNPs was analyzed by FT-IR, protein coagulation test and phytochemical analysis. Latex-synthesized AgNPs showed potential in selective and sensitive detection of toxic mercury ions (Hg2+) with limit of detection around 100 ppb. Addition of Hg2+ showed marked deviation in color and surface plasmon resonance spectra of AgNPs. Toxicity studies on aquatic non-target species Daphnia magna showed that latex-synthesized AgNPs (20.66 +/- A 1.52 % immobilization) were comparatively very less toxic than chemically synthesized AgNPs (51.66 +/- A 1.52 % immobilization). Similarly, comparative toxicity study on human red blood cells showed lower hemolysis (4.46 +/- A 0.01 %) by latex-synthesized AgNPs as compared to chemically synthesized AgNPs causing 6.14 +/- A 0.01 % hemolysis.
引用
收藏
页码:2223 / 2233
页数:11
相关论文