Rotating compressible fluids under strong stratification

被引:14
作者
Feireisl, Eduard [1 ]
Lu, Yong [2 ]
Novotny, Antonin [3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Math Inst, Prague 18675 8, Czech Republic
[3] Univ Sud Toulon Var, EA 2134, IMATH, F-83957 La Garde, France
关键词
LIMIT;
D O I
10.1016/j.nonrwa.2014.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes system written in the rotational frame describing the motion of a compressible viscous fluid under strong stratification. The asymptotic limit for low Mach and Rossby numbers and large Reynolds number is studied on condition that the Froude number characterizing the degree of stratification is proportional to the Mach number. We show that, at least for the well prepared data, the limit system is the same as for the problem without stratification-a variant of the incompressible planar Euler system. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 12 条
[1]  
Feireisl E., 2013, COMM PARTIAL DIFFERE
[2]  
Feireisl E., 2013, ANN MAT PUR IN PRESS
[3]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[4]   Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier-Stokes System [J].
Feireisl, Eduard ;
Jin, Bum Ja ;
Novotny, Antonin .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (04) :717-730
[5]   INCOMPRESSIBLE LIMIT OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VANISHING VISCOSITY COEFFICIENTS [J].
Jiang, Song ;
Ju, Qiangchang ;
Li, Fucai .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2539-2553
[6]   Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Periodic Boundary Conditions [J].
Jiang, Song ;
Ju, Qiangchang ;
Li, Fucai .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) :371-400
[7]   Scale-Dependent Models for Atmospheric Flows [J].
Klein, Rupert .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :249-274
[8]  
Lions P.-L., 1998, MATH TOPICS FLUID DY
[9]   Incompressible, inviscid limit of the compressible Navier-Stokes system [J].
Masmoudi, N .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (02) :199-224
[10]   Classical solutions for a generalized Euler equation in two dimensions [J].
Oliver, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 215 (02) :471-484