An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC

被引:13
作者
Skakun, Sergii [1 ,2 ,3 ]
Vermote, Eric F. [3 ]
Artigas, Andres Eduardo Santamaria [1 ,3 ]
Rountree, William H. [1 ,3 ]
Roger, Jean-Claude [1 ,3 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Coll Informat Studies iSch, College Pk, MD 20742 USA
[3] NASA Goddard Space Flight Ctr, Code 619,8800 Greenbelt Rd, Greenbelt, MD 20771 USA
关键词
Cloud; Validation; Sky imaging; Landsat; 8; Sentinel-2; LaSRC; DETECTION ALGORITHM; SHADOW; PROGRAM; 6S;
D O I
10.1016/j.jag.2020.102253
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Availability of a reliable cloud mask for optical satellite imagery is a prerequisite, when generating high-quality high-level geoinformation products. Creation of a reference (ground truth) cloud mask for moderate spatial resolution sensors, such as Operational Land Imager (OLI) aboard Landsat 8 and Multispectral Instrument (MSI) aboard Sentinel-2A/B satellites, is a challenging and time-consuming task. Existing reference datasets were mainly produced through photointerpretation of satellite images by an analyst, which can introduce subjectivity in detecting clouds. Therefore, other methods for generating cloud reference data shall be explored and evaluated that can complement existing datasets. In this paper, we document generation and provide the description of a new reference cloud dataset, named GSFC-Cloud, which is based on the extensive use of ground-based images of the sky. The dataset is collected over the same area, covers various cloud conditions, and is available for six Landsat 8 and twenty-eight Sentinel-2 scenes spanning the period of September 2017 to November 2018. The dataset is available in the vector format, so cloud masks at various spatial resolutions can be validated. We also describe a system to automate the process of ground-based data collection using low-cost off-the-shelf parts with the long-term objective to replicate this set-up in multiple locations around the world. We use the proposed dataset to validate and improve the Land Surface Reflectance Code (LaSRC) for cloud detection in Sentinel-2 imagery. We show that adding a parallax feature to estimate a subpixel shift between red and green bands with a phase correlation method can reduce overdetection of clouds and improve performance of LaSRC.
引用
收藏
页数:18
相关论文
共 44 条
[1]   Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure [J].
Baetens, Louis ;
Desjardins, Camille ;
Hagolle, Olivier .
REMOTE SENSING, 2019, 11 (04)
[2]   Cloud photogrammetry with dense stereo for fisheye cameras [J].
Beekmans, Christoph ;
Schneider, Johannes ;
Laebe, Thomas ;
Lennefer, Martin ;
Stachniss, Cyrill ;
Simmer, Clemens .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (22) :14231-14248
[3]   Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery [J].
Bolton, Douglas K. ;
Gray, Josh M. ;
Melaas, Eli K. ;
Moon, Minkyu ;
Eklundh, Lars ;
Friedl, Mark A. .
REMOTE SENSING OF ENVIRONMENT, 2020, 240
[4]   The Harmonized Landsat and Sentinel-2 surface reflectance data set [J].
Claverie, Martin ;
Ju, Junchang ;
Masek, Jeffrey G. ;
Dungan, Jennifer L. ;
Vermote, Eric F. ;
Roger, Jean-Claude ;
Skakun, Sergii V. ;
Justice, Christopher .
REMOTE SENSING OF ENVIRONMENT, 2018, 219 :145-161
[5]   Atmospheric Correction Inter-Comparison Exercise [J].
Doxani, Georgia ;
Vermote, Eric ;
Roger, Jean-Claude ;
Gascon, Ferran ;
Adriaensen, Stefan ;
Frantz, David ;
Hagolle, Olivier ;
Hollstein, Andre ;
Kirches, Grit ;
Li, Fuqin ;
Louis, Jerome ;
Mangin, Antoine ;
Pahlevan, Nima ;
Pflug, Bringfried ;
Vanhellemont, Quinten .
REMOTE SENSING, 2018, 10 (02)
[6]   Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services [J].
Drusch, M. ;
Del Bello, U. ;
Carlier, S. ;
Colin, O. ;
Fernandez, V. ;
Gascon, F. ;
Hoersch, B. ;
Isola, C. ;
Laberinti, P. ;
Martimort, P. ;
Meygret, A. ;
Spoto, F. ;
Sy, O. ;
Marchese, F. ;
Bargellini, P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :25-36
[7]   Cloud detection algorithm comparison and validation for operational Landsat data products [J].
Foga, Steve ;
Scaramuzza, Pat L. ;
Guo, Song ;
Zhu, Zhe ;
Dilley, Ronald D., Jr. ;
Beckmann, Tim ;
Schmidt, Gail L. ;
Dwyer, John L. ;
Hughes, M. Joseph ;
Laue, Brady .
REMOTE SENSING OF ENVIRONMENT, 2017, 194 :379-390
[8]   Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects [J].
Frantz, David ;
Hass, Erik ;
Uhl, Andreas ;
Stoffels, Johannes ;
Hill, Joachim .
REMOTE SENSING OF ENVIRONMENT, 2018, 215 :471-481
[9]   Copernicus Sentinel-2A Calibration and Products Validation Status [J].
Gascon, Ferran ;
Bouzinac, Catherine ;
Thepaut, Olivier ;
Jung, Mathieu ;
Francesconi, Benjamin ;
Louis, Jerome ;
Lonjou, Vincent ;
Lafrance, Bruno ;
Massera, Stephane ;
Gaudel-Vacaresse, Angelique ;
Languille, Florie ;
Alhammoud, Bahjat ;
Viallefont, Francoise ;
Pflug, Bringfried ;
Bieniarz, Jakub ;
Clerc, Sebastien ;
Pessiot, Laetitia ;
Tremas, Thierry ;
Cadau, Enrico ;
De Bonis, Roberto ;
Isola, Claudia ;
Martimort, Philippe ;
Fernandez, Valerie .
REMOTE SENSING, 2017, 9 (06)
[10]   A method for cloud detection and opacity classification based on ground based sky imagery [J].
Ghonima, M. S. ;
Urquhart, B. ;
Chow, C. W. ;
Shields, J. E. ;
Cazorla, A. ;
Kleissl, J. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (11) :2881-2892