Fault Detection and Severity Identification of Ball Bearings by Online Condition Monitoring

被引:108
作者
Abdeljaber, Osama [1 ]
Sassi, Sadok [1 ]
Avci, Onur [1 ]
Kiranyaz, Serkan [2 ]
Ibrahim, Abdelrahman Aly [3 ]
Gabbouj, Moncef [4 ]
机构
[1] Qatar Univ, Dept Civil & Architectural Engn, Doha, Qatar
[2] Qatar Univ, Dept Elect Engn, Doha, Qatar
[3] Qatar Univ, Dept Mech Engn, Doha, Qatar
[4] Tampereen Univ Technol, Tampere 33101, Finland
关键词
Ball bearings; convolutional neural networks (CNNs); damage detection; real-time monitoring; STRUCTURAL DAMAGE DETECTION; CONVOLUTIONAL NEURAL-NETWORK; DECOMPOSITION; DIAGNOSIS; DEEP;
D O I
10.1109/TIE.2018.2886789
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a fast, accurate, and simple systematic approach for online condition monitoring and severity identification of ball bearings. This approach utilizes compact one-dimensional (1-D) convolutional neural networks (CNNs) to identify, quantify, and localize bearing damage. The proposed approach is verified experimentally under several single and multiple damage scenarios. The experimental results demonstrated that the proposed approach can achieve a high level of accuracy for damage detection, localization, and quantification. Besides its real-time processing ability and superior robustness against the high-level noise presence, the compact and minimally trained 1-D CNNs in the core of the proposed approach can handle new damage scenarios with utmost accuracy.
引用
收藏
页码:8136 / 8147
页数:12
相关论文
共 41 条
[1]   1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data [J].
Abdeljaber, Osama ;
Avci, Onur ;
Kiranyaz, Mustafa Serkan ;
Boashash, Boualem ;
Sodano, Henry ;
Inman, Daniel J. .
NEUROCOMPUTING, 2018, 275 :1308-1317
[2]   Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks [J].
Abdeljaber, Osama ;
Avci, Onur ;
Kiranyaz, Serkan ;
Gabbouj, Moncef ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2017, 388 :154-170
[3]  
[Anonymous], 2009, TR2009 U TOR
[4]  
[Anonymous], 2013, ANALYSIS-UK, DOI DOI 10.1016/J.CSEFA.2012.11.003
[5]  
[Anonymous], MEASUREMENT SCI TECH
[6]  
Appana Dileep Kumar, 2017, Multi-disciplinary Trends in Artificial Intelligence. 11th International Workshop, MIWAI 2017. Proceedings: LNAI 10607, P189, DOI 10.1007/978-3-319-69456-6_16
[7]   Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks [J].
Avci, Onur ;
Abdeljaber, Osama ;
Kiranyaz, Serkan ;
Hussein, Mohammed ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2018, 424 :158-172
[8]   Structural Damage Detection in Real Time: Implementation of 1D Convolutional Neural Networks for SHM Applications [J].
Avci, Onur ;
Abdeljaber, Osama ;
Kiranyaz, Serkan ;
Inman, Daniel .
STRUCTURAL HEALTH MONITORING & DAMAGE DETECTION, VOL 7, 2017, :49-54
[9]   Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals [J].
Ben Ali, Jaouher ;
Fnaiech, Nader ;
Saidi, Lotfi ;
Chebel-Morello, Brigitte ;
Fnaiech, Farhat .
APPLIED ACOUSTICS, 2015, 89 :16-27
[10]   Deep, Big, Simple Neural Nets for Handwritten Digit Recognition [J].
Ciresan, Dan Claudiu ;
Meier, Ueli ;
Gambardella, Luca Maria ;
Schmidhuber, Juergen .
NEURAL COMPUTATION, 2010, 22 (12) :3207-3220