Relaxation and thermalization of isolated many-body quantum systems

被引:38
作者
Torres-Herrera, E. J. [1 ]
Kollmar, Davida [1 ]
Santos, Lea F. [1 ]
机构
[1] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
many-body quantum systems; isolated systems; quench dynamics; thermalization; QUANTIZED CHAOTIC SYSTEMS; FINITE FERMI SYSTEMS; NUCLEAR SHELL-MODEL; STATISTICAL-MECHANICS; MATRIX-ELEMENTS; OPTICAL LATTICE; SPIN CHAINS; DECAY; TIME; INTEGRABILITY;
D O I
10.1088/0031-8949/2015/T165/014018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide an overview of our numerical and analytical studies of isolated interacting quantum systems that are abruptly quenched out of equilibrium instantaneously. We describe the relaxation process to a new equilibrium and obtain lower bounds for the relaxation time of full random matrices and realistic systems with two-body interactions. We show that the size of the time fluctuations after relaxation decays exponentially with system size for systems without too many degeneracies. We also discuss the conditions for thermalization and demonstrate that it can happen after local and global quenches in space. The analyses are developed for systems, initial states, and few-body observables accessible to experiments with optical lattices.
引用
收藏
页数:12
相关论文
共 93 条
[1]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[2]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[3]   Incoherent transport induced by a single static impurity in a Heisenberg chain [J].
Barisic, O. S. ;
Prelovsek, P. ;
Metavitsiadis, A. ;
Zotos, X. .
PHYSICAL REVIEW B, 2009, 80 (12)
[4]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[5]   QUANTUM DECAY AND THE MANDELSTAM-TAMM TIME ENERGY INEQUALITY [J].
BHATTACHARYYA, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :2993-2996
[6]   Classical statistical mechanics of a few-body interacting spin model [J].
Borgonovi, F ;
Izrailev, FM .
PHYSICAL REVIEW E, 2000, 62 (05) :6475-6486
[7]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[8]   Simulations of information transport in spin chains [J].
Cappellaro, P. ;
Ramanathan, C. ;
Cory, D. G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[9]   Generalized Thermalization in an Integrable Lattice System [J].
Cassidy, Amy C. ;
Clark, Charles W. ;
Rigol, Marcos .
PHYSICAL REVIEW LETTERS, 2011, 106 (14)
[10]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034