Coexisting Hidden Attractors in a 4-D Simplified Lorenz System

被引:212
作者
Li, Chunbiao [1 ,2 ]
Sprott, J. C. [3 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Jiangsu Inst Commerce, Jiangsu Circulat Modernizat Sensor Network, Engn Technol Res & Dev Ctr, Nanjing 210007, Peoples R China
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 03期
基金
美国国家科学基金会;
关键词
Hidden attractors; hyperchaos; attracting torus; multistability; CHAOS;
D O I
10.1142/S0218127414500345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new simple four-dimensional equilibrium-free autonomous ODE system is described. The system has seven terms, two quadratic nonlinearities, and only two parameters. Its Jacobian matrix everywhere has rank less than 4. It is hyperchaotic in some regions of parameter space, while in other regions it has an attracting torus that coexists with either a symmetric pair of strange attractors or with a symmetric pair of limit cycles whose basin boundaries have an intricate fractal structure. In other regions of parameter space, it has three coexisting limit cycles and Arnold tongues. Since there are no equilibria, all the attractors are hidden. This combination of features has not been previously reported in any other system, especially one as simple as this.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2011, J JISHOU UNIV
[2]   Dynamics of a hyperchaotic Lorenz system [J].
Barboza, Ruy .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (12) :4285-4294
[3]   Chaotic hyperjerk systems [J].
Chlouverakis, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2006, 28 (03) :739-746
[4]   The generation and circuit implementation of a new hyper-chaos based upon Lorenz system [J].
Gao, Tiegang ;
Chen, Guanrong ;
Chen, Zengqiang ;
Cang, Shijian .
PHYSICS LETTERS A, 2007, 361 (1-2) :78-86
[5]   HIDDEN ATTRACTORS IN DYNAMICAL SYSTEMS. FROM HIDDEN OSCILLATIONS IN HILBERT-KOLMOGOROV, AIZERMAN, AND KALMAN PROBLEMS TO HIDDEN CHAOTIC ATTRACTOR IN CHUA CIRCUITS [J].
Leonov, G. A. ;
Kuznetsov, N. V. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01)
[6]   Controlling a unified chaotic system to hyperchaotic [J].
Li, YX ;
Chen, GR ;
Tang, WKS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (04) :204-207
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations [J].
Mirus, KA ;
Sprott, JC .
PHYSICAL REVIEW E, 1999, 59 (05) :5313-5324
[10]   A new five-term simple chaotic attractor [J].
Munmuangsaen, Buncha ;
Srisuchinwong, Banlue .
PHYSICS LETTERS A, 2009, 373 (44) :4038-4043