NiCoSe2-x/N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting

被引:39
作者
Li, Jiang [2 ]
Wan, Meng [2 ]
Li, Tao [2 ]
Zhu, Han [1 ,2 ]
Zhao, Zhenghuan [3 ]
Wang, Zheng [3 ]
Wu, Weiwei [3 ]
Du, Mingliang [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Chem & Mat Engn, Minist Educ, Key Lab Synthet & Biol Colloids, Wuxi 214122, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Mat & Text, Hangzhou 310018, Zhejiang, Peoples R China
[3] Xidian Univ, Sch Adv Mat & Nanotechnol, Xian 710126, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
N-doped carbon; Nickel-cobalt diselenide; Core/shell nanorod; Selenization; Overall water splitting; BIFUNCTIONAL ELECTROCATALYSTS; OXYGEN REDUCTION; HIGHLY EFFICIENT; HYDROGEN; CATALYST; COBALT; COSE2; GRAPHENE; NANOSHEETS; FOAM;
D O I
10.1016/j.electacta.2018.04.032
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing stable and efficient bifunctional catalysts for overall water splitting is a critical step in the production of renewable energy sources. Here we report a stable and highly active electrocatalyst comprised of NiCoSe2-x/N-doped carbon mushroom-like core/shell nanorods on silk-derived carbon fiber through one step selenization. The unique one-dimensional nanorod structure facilitates the charge transport, and the N-doped carbon shell also increases the electrical conductivity, resulting in a remarkable enhancement of the catalytic activity. The N-doped carbon shell also functions as a protection layer. The composite catalyst therefore exhibits outstanding OER and HER performance, it can also stably drive the overall water splitting at a low cell voltage of 1.53 V in base solution. The present work provides an efficient strategy for the fabrication of stable and active electrocatalysts with earth-abundant elements. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 41 条
[1]   Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution [J].
Chang, Jinfa ;
Xiao, Yao ;
Xiao, Meiling ;
Ge, Junjie ;
Liu, Changpeng ;
Xing, Wei .
ACS Catalysis, 2015, 5 (11) :6874-6878
[2]   Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction [J].
Chen, Jun Song ;
Ren, Jiawen ;
Shalom, Menny ;
Fellinger, Tim ;
Antoniettit, Markus .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5509-5516
[3]   Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction [J].
Cheng, Liang ;
Huang, Wenjing ;
Gong, Qiufang ;
Liu, Changhai ;
Liu, Zhuang ;
Li, Yanguang ;
Dai, Hongjie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7860-7863
[4]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[5]   Energy resources and global development [J].
Chow, J ;
Kopp, RJ ;
Portney, PR .
SCIENCE, 2003, 302 (5650) :1528-1531
[6]   MOF-Derived Zn-Doped CoSe2 as an Efficient and Stable Free-Standing Catalyst for Oxygen Evolution Reaction [J].
Dong, Qiuchun ;
Wang, Qian ;
Dai, Ziyang ;
Qiu, Huajun ;
Dong, Xiaochen .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) :26902-26907
[7]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061
[8]   Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation [J].
Gao, Min-Rui ;
Cao, Xuan ;
Gao, Qiang ;
Xu, Yun-Fei ;
Zheng, Ya-Rong ;
Jiang, Jun ;
Yu, Shu-Hong .
ACS NANO, 2014, 8 (04) :3970-3978
[9]   Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite [J].
Gao, Min-Rui ;
Xu, Yun-Fei ;
Jiang, Jun ;
Zheng, Ya-Rong ;
Yu, Shu-Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2930-2933
[10]   Phase-Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts [J].
Gao, Qiang ;
Huang, Chuan-Qi ;
Ju, Yi-Ming ;
Gao, Min-Rui ;
Liu, Jian-Wei ;
An, Duo ;
Cui, Chun-Hua ;
Zheng, Ya-Rong ;
Li, Wei-Xue ;
Yu, Shu-Hong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (27) :7769-7773