Critical exponents of the Ising model on low-dimensional fractal media

被引:10
作者
Bab, M. A. [1 ]
Fabricius, G. [1 ]
Albano, E. V. [1 ]
机构
[1] Natl Univ La Plata, INIFTA, Fac Ciencias Exactas, CCT La Plata,CONICET, RA-1900 La Plata, Argentina
关键词
Ising model; Fractal media; Critical behavior; Monte Carlo method; Out equilibrium physics; MONTE-CARLO SIMULATIONS; TIME CRITICAL-DYNAMICS; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; LATTICES;
D O I
10.1016/j.physa.2008.10.029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical behavior of the Ising model on fractal substrates with noninteger Hausdorff dimension d(H) < 2 and infinite ramification order is studied by means of the short-time critical dynamic scaling approach. Our determinations of the critical temperatures and critical exponents beta, gamma, and nu are compared to the predictions of the Wilson-Fisher expansion, the Wallace-Zia expansion, the transfer matrix method, and more recent Monte Carlo simulations using finite-size scaling analysis. We also determined the effective dimension (d(ef)), which plays the role of the Euclidean dimension in the formulation of the dynamic scaling and in the hyperscaling relationship d(ef) = 2 beta/nu + gamma/nu. Furthermore, we obtained the dynamic exponent z of the nonequilibrium correlation length and the exponent theta that governs the initial increase of the magnetization. Our results are consistent with the convergence of the lower-critical dimension towards d = 1 for fractal substrates and suggest that the Hausdorff dimension may be different from the effective dimension. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 22 条
[1]   CRITICAL-DYNAMICS OF THE KINETIC ISING-MODEL ON FRACTAL GEOMETRIES .2. SIERPINSKI CARPETS [J].
ACHIAM, Y .
PHYSICAL REVIEW B, 1986, 33 (11) :7762-7769
[2]   Discrete scale invariance effects in the nonequilibrium critical behavior of the Ising magnet on a fractal substrate [J].
Bab, M. A. ;
Fabricius, G. ;
Albano, E. V. .
PHYSICAL REVIEW E, 2006, 74 (04)
[3]   On the occurrence of oscillatory modulations in the power law behavior of dynamic and kinetic processes in fractals [J].
Bab, M. A. ;
Fabricius, G. ;
Albano, E. V. .
EPL, 2008, 81 (01)
[4]   Critical behavior of an Ising system on the Sierpinski carpet: A short-time dynamics study [J].
Bab, MA ;
Fabricius, G ;
Albano, EV .
PHYSICAL REVIEW E, 2005, 71 (03)
[5]   Critical properties of the Ising model on Sierpinski fractals: A finite-size scaling-analysis approach [J].
Carmona, JM ;
Marconi, UMB ;
Ruiz-Lorenzo, JJ ;
Tarancon, A .
PHYSICAL REVIEW B, 1998, 58 (21) :14387-14396
[6]   Universal formulas for percolation thresholds [J].
Galam, S ;
Mauger, A .
PHYSICAL REVIEW E, 1996, 53 (03) :2177-2181
[7]   PHASE-TRANSITIONS ON FRACTALS .1. QUASILINEAR LATTICES [J].
GEFEN, Y ;
AHARONY, A ;
MANDELBROT, BB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (06) :1267-1278
[8]   PHASE-TRANSITIONS ON FRACTALS .3. INFINITELY RAMIFIED LATTICES [J].
GEFEN, Y ;
AHARONY, A ;
MANDELBROT, BB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (06) :1277-1289
[9]   CRITICAL PHENOMENA ON FRACTAL LATTICES [J].
GEFEN, Y ;
MANDELBROT, BB ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1980, 45 (11) :855-858
[10]  
HAO L, 1987, J PHYS A, V19, P1627