Electrostatic free energy calculations using the generalized solvent boundary potential method

被引:35
作者
Banavali, NK [1 ]
Im, W [1 ]
Roux, B [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Biochem & Struct Biol, New York, NY 10021 USA
关键词
D O I
10.1063/1.1507108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Free energy perturbation (FEP) calculations using all-atom molecular dynamics simulations with a large number of explicit solvent molecules are a powerful approach to study ligand-macromolecule association processes at the atomic level. One strategy to carry out FEP calculations efficiently and reduce computational time is to consider the explicit dynamics of only a small number of atoms in a localized region around the ligand. Such an approximation is motivated by the observation that the factors governing binding specificity are dominated by interactions in the vicinity of the ligand. However, a straightforward truncation of the system may yield inaccurate results as the influence exerted by the remote regions of the macromolecule and the surrounding solvent through long-range electrostatic effects may be significant. To obtain meaningful results, it is important to incorporate the influence of the remote regions of the ligand-macromolecule complex implicitly using some effective potential. The generalized solvent boundary potential (GSBP) that was developed recently [W. Im, S. Berneche, and B. Roux, J. Chem. Phys. 114, 2924 (2001)] is an efficient computational method to represent the long-range electrostatic interactions arising from remote (outer) regions in simulations of a localized (inner) region with a small number of explicit atoms. In the present work, FEP calculations combined with GSBP are used to illustrate the importance of these long-range electrostatic factors in estimation of the charging free energy of an aspartate ligand bound to the aspartyl-tRNA synthetase. Calculations with explicit spherical simulation inner regions of different radii are used to test the accuracy of the GSBP method and also illustrate the importance of explicit protein and solvent dynamics in the free energy estimation. The influence of the represented outer region is tested using separate simulations in which the reaction field and/or the protein static field are excluded. Both components are shown to be essential to obtain quantitatively meaningful results. The ability of implicitly treating the influence of protein fluctuations in the outer region using a protein dielectric constant is examined. It is shown that accurate charging free energy calculations can be performed for this system with a spherical region of 15 to 20 A radius, which roughly corresponds to 1500-3500 moving atoms. The results indicate that GSBP in combination with FEP calculations is a precise and efficient approach to include long-range electrostatic effects in the study of ligand binding to large macromolecules. (C) 2002 American Institute of Physics.
引用
收藏
页码:7381 / 7388
页数:8
相关论文
共 57 条
[1]   Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations [J].
Archontis, G ;
Simonson, T ;
Moras, D ;
Karplus, M .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (05) :823-846
[2]   Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase [J].
Archontis, G ;
Simonson, T ;
Karplus, M .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 306 (02) :307-327
[3]   Dielectric relaxation in an enzyme active site: Molecular dynamics simulations interpreted with a macroscopic continuum model [J].
Archontis, G ;
Simonson, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (44) :11047-11056
[4]   Structural and functional considerations of the aminoacylation reaction [J].
Arnez, JG ;
Moras, D .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (06) :211-216
[5]   MOLECULAR-DYNAMICS CHARACTERIZATION OF THE ACTIVE CAVITY OF CARBOXYPEPTIDASE-A AND SOME OF ITS INHIBITOR ADDUCTS [J].
BANCI, L ;
SCHRODER, S ;
KOLLMAN, PA .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 13 (04) :288-305
[6]   FINITE REPRESENTATION OF AN INFINITE BULK SYSTEM - SOLVENT BOUNDARY POTENTIAL FOR COMPUTER-SIMULATIONS [J].
BEGLOV, D ;
ROUX, B .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) :9050-9063
[7]   MOLECULAR-DYNAMICS WITH STOCHASTIC BOUNDARY-CONDITIONS [J].
BERKOWITZ, M ;
MCCAMMON, JA .
CHEMICAL PHYSICS LETTERS, 1982, 90 (03) :215-217
[8]   The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate:: the mechanism of discrimination between asparagine and aspartic acid [J].
Berthet-Colominas, C ;
Seignovert, L ;
Härtlein, M ;
Grotli, M ;
Cusack, S ;
Leberman, R .
EMBO JOURNAL, 1998, 17 (10) :2947-2960
[9]   FREE-ENERGY VIA MOLECULAR SIMULATION - APPLICATIONS TO CHEMICAL AND BIOMOLECULAR SYSTEMS [J].
BEVERIDGE, DL ;
DICAPUA, FM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1989, 18 :431-492
[10]   Evaluation of protein-protein association energies by free energy perturbation calculations [J].
Brandsdal, BO ;
Smalås, AO .
PROTEIN ENGINEERING, 2000, 13 (04) :239-245