Early azimuthal instability during drop impact

被引:34
作者
Li, E. Q. [1 ,2 ]
Thoraval, M. -J. [1 ,3 ]
Marston, J. O. [1 ,4 ]
Thoroddsen, S. T. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Univ Sci & Technol China, Dept Modern Mech, Hefei 230027, Anhui, Peoples R China
[3] Xi An Jiao Tong Univ, Int Ctr Appl Mech, Shaanxi Key Lab Environm & Control Flight Vehicle, State Key Lab Strength & Vibrat Mech Struct,Sch A, Xian 710049, Shaanxi, Peoples R China
[4] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
基金
中国国家自然科学基金;
关键词
capillary flows; drops and bubbles; interfacial flows (free surface); SOLID-SURFACE; 3-DIMENSIONAL THEORY; BUBBLE ENTRAPMENT; WAGNER PROBLEM; EJECTA SHEET; LIQUID-FILMS; WATER IMPACT; AIR; EVOLUTION; SPHERE;
D O I
10.1017/jfm.2018.383
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
When a drop impacts on a liquid surface its bottom is deformed by lubrication pressure and it entraps a thin disc of air, thereby making contact along a ring at a finite distance from the centreline. The outer edge of this contact moves radially at high speed, governed by the impact velocity and bottom radius of the drop. Then at a certain radial location an ejecta sheet emerges from the neck connecting the two liquid masses. Herein, we show the formation of an azimuthal instability at the base of this ejecta, in the sharp corners at the two sides of the ejecta. They promote regular radial vorticity, thereby breaking the axisymmetry of the motions on the finest scales. The azimuthal wavenumber grows with the impact Weber number, based on the bottom curvature of the drop, reaching over 400 streamwise streaks around the periphery. This instability occurs first at Reynolds numbers (Re) of similar to 7000, but for larger Re is overtaken by the subsequent axisymmetric vortex shedding and their interactions can form intricate tangles, loops or chains.
引用
收藏
页码:821 / 835
页数:15
相关论文
共 44 条
  • [31] Drop impact entrapment of bubble rings
    Thoraval, M.-J.
    Takehara, K.
    Etoh, T. G.
    Thoroddsen, S. T.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 724 : 234 - 258
  • [32] von Karman Vortex Street within an Impacting Drop
    Thoraval, Marie-Jean
    Takehara, Kohsei
    Etoh, Takeharu Goji
    Popinet, Stephane
    Ray, Pascal
    Josserand, Christophe
    Zaleski, Stephane
    Thoroddsen, Sigurdur T.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (26)
  • [33] High-speed imaging of drops and bubbles
    Thoroddsen, S. T.
    Etoh, T. G.
    Takehara, K.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 : 257 - 285
  • [34] Micro-bubble morphologies following drop impacts onto a pool surface
    Thoroddsen, S. T.
    Thoraval, M.-J.
    Takehara, K.
    Etoh, T. G.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 708 : 469 - 479
  • [35] Micro-splashing by drop impacts
    Thoroddsen, S. T.
    Takehara, K.
    Etoh, T. G.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 706 : 560 - 570
  • [36] Air entrapment under an impacting drop
    Thoroddsen, ST
    Etoh, TG
    Takehara, K
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 478 : 125 - 134
  • [37] The ejecta sheet generated by the impact of a drop
    Thoroddsen, ST
    [J]. JOURNAL OF FLUID MECHANICS, 2002, 451 : 373 - 381
  • [38] Air entrainment during impact of droplets on liquid surfaces
    Tran, Tuan
    de Maleprade, Helene
    Sun, Chao
    Lohse, Detlef
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 726 : R3
  • [39] Fragmentation
    Villermaux, E.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2007, 39 : 419 - 446
  • [40] Impact and slide occurrence on the surface of liquids
    Wagner, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1932, 12 : 193 - 215