Early azimuthal instability during drop impact

被引:34
作者
Li, E. Q. [1 ,2 ]
Thoraval, M. -J. [1 ,3 ]
Marston, J. O. [1 ,4 ]
Thoroddsen, S. T. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Univ Sci & Technol China, Dept Modern Mech, Hefei 230027, Anhui, Peoples R China
[3] Xi An Jiao Tong Univ, Int Ctr Appl Mech, Shaanxi Key Lab Environm & Control Flight Vehicle, State Key Lab Strength & Vibrat Mech Struct,Sch A, Xian 710049, Shaanxi, Peoples R China
[4] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
基金
中国国家自然科学基金;
关键词
capillary flows; drops and bubbles; interfacial flows (free surface); SOLID-SURFACE; 3-DIMENSIONAL THEORY; BUBBLE ENTRAPMENT; WAGNER PROBLEM; EJECTA SHEET; LIQUID-FILMS; WATER IMPACT; AIR; EVOLUTION; SPHERE;
D O I
10.1017/jfm.2018.383
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
When a drop impacts on a liquid surface its bottom is deformed by lubrication pressure and it entraps a thin disc of air, thereby making contact along a ring at a finite distance from the centreline. The outer edge of this contact moves radially at high speed, governed by the impact velocity and bottom radius of the drop. Then at a certain radial location an ejecta sheet emerges from the neck connecting the two liquid masses. Herein, we show the formation of an azimuthal instability at the base of this ejecta, in the sharp corners at the two sides of the ejecta. They promote regular radial vorticity, thereby breaking the axisymmetry of the motions on the finest scales. The azimuthal wavenumber grows with the impact Weber number, based on the bottom curvature of the drop, reaching over 400 streamwise streaks around the periphery. This instability occurs first at Reynolds numbers (Re) of similar to 7000, but for larger Re is overtaken by the subsequent axisymmetric vortex shedding and their interactions can form intricate tangles, loops or chains.
引用
收藏
页码:821 / 835
页数:15
相关论文
共 44 条
  • [1] Longitudinal instability of a liquid rim
    Agbaglah, Gilou
    Josserand, Christophe
    Zaleski, Stephane
    [J]. PHYSICS OF FLUIDS, 2013, 25 (02)
  • [2] Batchelor GK, 1967, An introduction to fluid dynamics
  • [3] Maximal Air Bubble Entrainment at Liquid-Drop Impact
    Bouwhuis, Wilco
    van der Veen, Roeland C. A.
    Tuan Tran
    Keij, Diederik L.
    Winkels, Koen G.
    Peters, Ivo R.
    van der Meer, Devaraj
    Sun, Chao
    Snoeijer, Jacco H.
    Lohse, Detlef
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [4] Experimental observation of von Karman vortices during drop impact
    Castrejon-Pita, A. A.
    Castrejon-Pita, J. R.
    Hutchings, I. M.
    [J]. PHYSICAL REVIEW E, 2012, 86 (04):
  • [5] Dynamics and stability of thin liquid films
    Craster, R. V.
    Matar, O. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (03) : 1131 - 1198
  • [6] Kirana: a solid-state megapixel uCMOS image sensor for ultra-high speed imaging
    Crooks, J.
    Marsh, B.
    Turchetta, R.
    Taylor, K.
    Chan, W.
    Lahav, A.
    Fenigstein, A.
    [J]. SENSORS, CAMERAS, AND SYSTEMS FOR INDUSTRIAL AND SCIENTIFIC APPLICATIONS XIV, 2013, 8659
  • [7] Complexities of splashing
    Deegan, R. D.
    Brunet, P.
    Eggers, J.
    [J]. NONLINEARITY, 2008, 21 (01) : C1 - C11
  • [8] An image sensor which captures 100 consecutive frames at 1 000 000 frames/s
    Etoh, TG
    Poggemann, D
    Kreider, G
    Mutoh, H
    Theuwissen, AJP
    Ruckelshausen, A
    Kondo, Y
    Maruno, H
    Takubo, K
    Soya, H
    Takehara, K
    Okinaka, T
    Takano, Y
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (01) : 144 - 151
  • [9] On the cusps bordering liquid sheets
    Gordillo, J. M.
    Lhuissier, H.
    Villermaux, E.
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 754
  • [10] Universal mechanism for ai rentrainment during liquid impact
    Hendrix, Maurice H. W.
    Bouwhuis, Wilco
    van der Meer, Devaraj
    Lohse, Detlef
    Snoeijer, Jacco H.
    [J]. JOURNAL OF FLUID MECHANICS, 2016, 789 : 708 - 725