Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification

被引:66
作者
Fraz, M. Moazam [1 ]
Jahangir, Waqas [1 ]
Zahid, Saqib [1 ]
Hamayun, Mian M. [1 ]
Barman, Sarah A. [2 ]
机构
[1] Natl Univ Sci & Technol, SEECS, Islamabad, Pakistan
[2] Kingston Univ London, Fac Sci Engn & Comp, Kingston Upon Thames, Surrey, England
关键词
Medical image analysis; Feature extraction; Ensemble classification; Exudate segmentation; Machine learning; Diabetic retinopathy; DIABETIC-RETINOPATHY; FUNDUS IMAGES; AUTOMATED DETECTION; BLOOD-VESSELS;
D O I
10.1016/j.bspc.2017.02.012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic Retinopathy (DR) is the one among other main reasons of blindness in the adult population. Early discovery of DR through screening programs and successive treatment is critical in order to avoid visual blindness. The early signs of DR as manifested in retinal images include micro-aneurysms, hemorrhages and exudates. In this paper, we have presented an ensemble classifier of bootstrapped decision trees for multiscale localization and segmentation of exudates in retinal fundus images. The candidate exudates are extracted at fine grain and coarse grain levels using morphological reconstruction and Gabor filter respectively. The contextual cues are applied to the candidate exudates, which greatly reduces false positives in exudate segmentation. Several region based features are computed from candidate regions to train the ensemble classifier for classification of pixel as exudate and non-exudate region. The method has been evaluated on four publically available databases; DIARETDB1, e-Ophtha EX, HEI-MED and Messidor. The method has achieved the segmentation accuracy as (0.8772, 0.8925, 0.9577, and 0.9836) and area under ROC as (0.9310, 0.9403, 0.9842, and 0.9961) for each of the dataset respectively. The algorithm appears to be an efficient tool for automated detection of exudates in large population based DR screening programs, due to the attained accuracy, robustness, simplicity and speed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 62
页数:13
相关论文
共 40 条
[1]   A Multiscale Optimization Approach to Detect Exudates in the Macula [J].
Agurto, Carla ;
Murray, Victor ;
Yu, Honggang ;
Wigdahl, Jeffrey ;
Pattichis, Marios ;
Nemeth, Sheila ;
Barriga, E. Simon ;
Soliz, Peter .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (04) :1328-1336
[2]   Automated detection of exudates and macula for grading of diabetic macular edema [J].
Akram, M. Usman ;
Tariq, Anam ;
Khan, Shoab A. ;
JavedDepartment, M. Younus .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 114 (02) :141-152
[3]   Statistical atlas based exudate segmentation [J].
Ali, Sharib ;
Sidibe, Desire ;
Adal, Kedir M. ;
Giancardo, Luca ;
Chaum, Edward ;
Karnowski, Thomas P. ;
Meriaudeau, Fabrice .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (5-6) :358-368
[4]   Optic disc detection and boundary extraction in retinal images [J].
Basit, A. ;
Fraz, Muhammad Moazam .
APPLIED OPTICS, 2015, 54 (11) :3440-3447
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[7]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234
[8]   Automated detection of exudates for diabetic retinopathy screening [J].
Fleming, Alan D. ;
Philip, Sam ;
Goatman, Keith A. ;
Williams, Graeme J. ;
Olson, John A. ;
Sharp, Peter F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (24) :7385-7396
[9]   Luminosity and contrast normalization in retinal images [J].
Foracchia, M ;
Grisan, E ;
Ruggeri, A .
MEDICAL IMAGE ANALYSIS, 2005, 9 (03) :179-190
[10]   QUARTZ: Quantitative Analysis of Retinal Vessel Topology and size - An automated system for quantification of retinal vessels morphology [J].
Fraz, M. M. ;
Welikala, R. A. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Strachan, D. P. ;
Barman, S. A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (20) :7221-7234