Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

被引:131
作者
Mackie, Roderick I.
Koike, Satoshi
Krapac, Ivan
Chee-Sanford, Joanne
Maxwell, Scott
Aminov, Rustam I.
机构
[1] Univ Illinois, Div Nutr Sci, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Anim Sci, Anim Sci Lab 132, Urbana, IL 61801 USA
[3] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[4] Univ Illinois, Illinois State Geol Survey, Urbana, IL 61801 USA
[5] Univ Illinois, USDA ARS, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Nat Resources & Envrionm Sci, Urbana, IL 61801 USA
[8] Rowett Res Inst, Aberdeen, Scotland
关键词
D O I
10.1080/10495390600956953
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment. To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 mu g/L. Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and groundwater samples, four commonly occurring tetracycline (tet) resistance genes-tet(M), tet(O), tet(Q), and tet(W)-were detected. The detection frequency of tet genes was much higher in wells located closer to and down-gradient from the lagoons than in wells more distant from the lagoons. These results suggested that in the groundwater underlying both facilities tetracycline resistance genes exist and are somewhat persistent, but that the distribution and potentially the flux for each tet gene varied throughout the study period.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 57 条
[1]   BACTERIAL PLASMIDS AND GENE FLUX [J].
AMABILECUEVAS, CF ;
CHICUREL, ME .
CELL, 1992, 70 (02) :189-199
[2]   Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria [J].
Aminov, RI ;
Chee-Sanford, JC ;
Garrigues, N ;
Teferedegne, B ;
Krapac, IJ ;
White, BA ;
Mackie, RI .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (04) :1786-1793
[3]   Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins [J].
Aminov, RI ;
Garrigues-Jeanjean, N ;
Mackie, RI .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (01) :22-32
[4]  
Andremont A, 2003, ASM NEWS, V69, P601
[5]  
[Anonymous], 1992, STAND METH EX WAT WA
[6]   Veterinary medicines in the environment [J].
Boxall, ABA ;
Fogg, LA ;
Blackwell, PA ;
Kay, P ;
Pemberton, EJ ;
Croxford, A .
REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, VOL 180, 2004, 180 :1-91
[7]   Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations [J].
Campagnolo, ER ;
Johnson, KR ;
Karpati, A ;
Rubin, CS ;
Kolpin, DW ;
Meyer, MT ;
Esteban, JE ;
Currier, RW ;
Smith, K ;
Thu, KM ;
McGeehin, M .
SCIENCE OF THE TOTAL ENVIRONMENT, 2002, 299 (1-3) :89-95
[8]   Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities [J].
Chee-Sanford, JC ;
Aminov, RI ;
Krapac, IJ ;
Garrigues-Jeanjean, N ;
Mackie, RI .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (04) :1494-1502
[9]   Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits [J].
Cotta, MA ;
Whitehead, TR ;
Zeltwanger, RL .
ENVIRONMENTAL MICROBIOLOGY, 2003, 5 (09) :737-745
[10]  
Cromwell G.L., 2001, SWINE NUTR, P401