Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.)

被引:163
|
作者
Wang, Min [1 ]
Zou, Jinhua [1 ]
Duan, Xuchuan [1 ]
Jiang, Wusheng [1 ]
Liu, Donghua [1 ]
机构
[1] Tianjin Normal Univ, Coll Chem & Life Sci, Dept Biol, Tianjin 300074, Peoples R China
基金
中国国家自然科学基金;
关键词
Zea mays L; accumulation; Cd; Mn; Fe; Cu; Zn;
D O I
10.1016/j.biortech.2005.11.028
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The effects of different concentrations of Cd on growth of maize (Zea mays L.) and metal uptake were investigated. Cd accumulations in roots and shoots and the interactions among other metals (Mn, Fe, Cu and Zn) were analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES). The concentrations of cadmium chloride (CdCl2 center dot 2.5H(2)O) used ranged from 10(-4) M to 10(-6) M. Cd had stimulatory effects during the first 5 days on root length of Nongda No. 108 at 10(-6) M and 10(-5) M Cd concentrations. Seedlings exposed to 10(-4) M Cd solution exhibited substantial growth reduction, and root growth even stopped. Root growth of Liyu No. 6 was stimulated at concentrations of 10(-5) M and 10(-6) M Cd during the entire experiment (15 days). Cadmium inhibited root growth of Liyu No. 6 at 10(-4) M Cd after 10 days of treatment. The Cd accumulation in roots and shoots of the two cultivars increased significantly (P < 0.05) with increasing Cd concentration and duration of treatment. Cadmium concentrated mainly in the roots, and small amounts were transferred to shoots. The proportion of Cd in the roots of Nongda No. 108 decreased with increases in Cd concentrations and duration of treatment, except for the group exposed to 10(-4) M Cd. In Liyu No. 6, the proportion of Cd in the root decreased progressively with an increase in Cd concentrations. Liyu No. 6 has a greater ability to remove Cd from solution and accumulate it when compared with Nongda No. 108. Liyu No. 6 can be considered a Cd-hyperaccumulator, according to the current accepted shoot concentration that defines hyperaccumulation as 0.01% (w/w) for cadmium. This cultivar, producing many roots and a high biomass and with great ability to accumulate Cd can play an important role in the treatment of soils stressed by Cd. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [1] Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi
    Liu, Lingzhi
    Gong, Zongqiang
    Zhang, Yulong
    Li, Peijun
    ECOTOXICOLOGY, 2014, 23 (10) : 1979 - 1986
  • [2] Differences of cadmium uptake and accumulation in roots of two maize varieties (Zea mays L.)
    Qu, Mengxue
    Song, Jie
    Ren, Hao
    Zhao, Bin
    Zhang, Jiwang
    Ren, Baizhao
    Liu, Peng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (43) : 96993 - 97004
  • [3] Uptake and accumulation of copper by roots and shoots of maize( Zea mays L.)
    LIU Dong hua 1*
    2 Library
    Journal of Environmental Sciences, 2001, (02) : 228 - 232
  • [4] Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.)
    Liu, DH
    Jiang, WS
    Hou, WQ
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2001, 13 (02) : 228 - 232
  • [5] UPTAKE AND ACCUMULATION OF CADMIUM AND ZINC BY ZEA MAYS L. AT DIFFERENT CD plus ZN SUPPLY LEVELS
    Tao, Ling
    Yu, Fangke
    Ren, Jun
    Wang, Chaoxu
    FRESENIUS ENVIRONMENTAL BULLETIN, 2014, 23 (09): : 2164 - 2170
  • [6] Effects of humic acid on the growth and cadmium accumulation of maize (Zea mays L.) seedlings
    Song, Jun
    Pi, Boyi
    Dai, Jingtong
    Nie, Zhi
    Yu, Guirong
    Du, Wenping
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2025, : 888 - 895
  • [7] Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.)
    Lin, Kaina
    Williams, Darron, V
    Zeng, Meng
    Ahmed, Imrul Mosaddek
    Dai, Huaxin
    Cao, Fangbin
    Wu, Feibo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (14) : 20721 - 20730
  • [8] Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.)
    Kaina Lin
    Darron V. Williams
    Meng Zeng
    Imrul Mosaddek Ahmed
    Huaxin Dai
    Fangbin Cao
    Feibo Wu
    Environmental Science and Pollution Research, 2022, 29 : 20721 - 20730
  • [9] The Dynamics of Selenium Uptake by Maize (Zea mays L.)
    Placzek, Aldona
    Patorczyk-Pytlik, Barbara
    AGRONOMY-BASEL, 2021, 11 (07):
  • [10] Influence of Soil Amendments on Uptake and Accumulation of Cd and Pb in Maize (Zea mays L.)
    Gao, Wei
    Zhao, Peng
    Sui, Fuqing
    Liu, Hongen
    Fu, Haichao
    ENVIRONMENTAL ENGINEERING SCIENCE, 2018, 35 (03) : 194 - 202