A common algebraic description for probabilistic and quantum computations (Extended abstract)

被引:0
作者
Beaudry, M
Fernandez, JM
Holzer, M
机构
[1] Univ Sherbrooke, Dept Math & Informat, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Montreal, Dept IRO, Montreal, PQ H3C 3J7, Canada
[3] Tech Univ Munich, Inst Informat, D-85748 Garching, Germany
来源
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS | 2004年 / 3153卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Through the study of gate arrays we develop a unified framework to deal with probabilistic and quantum computations, where the former is shown to be a natural special case of the latter. On this basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula which satisfies the conditions of the partial trace problem, and vice-versa. In this way complete problems for the classes pr-BPP (promise BPP) and pr-BQP (promise BQP) are given when changing the semiring from (Q(+), +, (.)) to the field (Q, +, (.)). Moreover, by variants of the problem under consideration, classes like circle plusP, NP, C=P, its complement co-C=P, the promise version of Valiant's class UP, its generalization promise SPP, and unique polytime US are captured as problem property and the semiring varies.
引用
收藏
页码:851 / 862
页数:12
相关论文
共 15 条
[1]   Quantum computability [J].
Adleman, LM ;
Demarrais, J ;
Huang, MDA .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1524-1540
[2]  
[Anonymous], ADV TOPICS COMPUTER
[3]  
[Anonymous], 1993, P 34 ANN S FDN COMP
[4]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[5]  
Beaudry M, 2001, LECT NOTES COMPUT SC, V2136, P173
[6]   TIME-SPACE TRADE-OFFS FOR REVERSIBLE COMPUTATION [J].
BENNETT, CH .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :766-776
[7]   Complexity of tensor calculus [J].
Damm, C ;
Holzer, M ;
McKenzie, P .
COMPUTATIONAL COMPLEXITY, 2002, 11 (1-2) :54-89
[8]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[9]   2-BIT GATES ARE UNIVERSAL FOR QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
PHYSICAL REVIEW A, 1995, 51 (02) :1015-1022
[10]   GAP-DEFINABLE COUNTING CLASSES [J].
FENNER, SA ;
FORTNOW, LJ ;
KURTZ, SA .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 48 (01) :116-148