Congruences for the partition function in certain arithmetic progressions

被引:0
作者
Urroz, JJ [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
关键词
modular forms; partition function;
D O I
10.1016/S0012-365X(99)00160-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The partition function P(n) satisfy some congruence properties. Eichhorn and Ono prove the existence of an effective constant C(m,r) ( where m,r epsilon N have some restrictions), such that if p(mn + r) drop 0(mod m) for n less than or equal to C(m,r), then the congruence holds for every non-negative integer n. In this paper we improve the value of C(m,r) by removing its dependence in r. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 7 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]  
ATKIN AOL, 1968, P LOND MATH SOC, V18, P563
[3]  
ATKIN JOL, 1967, T AM MATH SOC, V126, P442
[4]  
Eichhorn D, 1996, PROG MATH, V138, P309
[5]  
KOBLITZ N., 1984, INTRO ELLIPTIC CURVE
[6]   The partition function in arithmetic progressions [J].
Ono, K .
MATHEMATISCHE ANNALEN, 1998, 312 (02) :251-260
[7]  
ONO K, 1999, DISTRIBUTION PARTITI