Non-bipartite distance-regular graphs with a small smallest eigenvalue

被引:0
作者
Qiao, Zhi [1 ]
Jing, Yifan [2 ]
Koolen, Jack [3 ,4 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, Wen Tsun Wu Key Lab, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Distance-regular graphs; Smallest eigenvalue; Odd girth;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2017, Qiao and Koolen showed that for any fixed integer D >= 3, there are only finitely many non-bipartite distance-regular graphs with theta(min) <= -alpha k, where 0 < alpha < 1 is any fixed number. In this paper, we will study non-bipartite distance-regular graphs with relatively small theta(min) compared with k. In particular, we will show that if theta(min) is relatively close to -k then the odd girth g must be large. Also we will classify the non-bipartite distance-regular graphs with theta(min) <= -D-1/Dk for D = 4, 5.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Diameter bounds for geometric distance-regular graphs
    Bang, Sejeong
    DISCRETE MATHEMATICS, 2018, 341 (01) : 253 - 260
  • [32] Asymptotic Delsarte cliques in distance-regular graphs
    Babai, Laszlo
    Wilmes, John
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (04) : 771 - 782
  • [33] Triangle- and pentagon-free distance-regular graphs with an eigenvalue multiplicity equal to the valency
    Jurisic, A
    Koolen, J
    Miklavic, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) : 245 - 258
  • [34] Spectral characterizations of some distance-regular graphs
    Van Dam, ER
    Haemers, WH
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 15 (02) : 189 - 202
  • [35] Asymptotic Delsarte cliques in distance-regular graphs
    László Babai
    John Wilmes
    Journal of Algebraic Combinatorics, 2016, 43 : 771 - 782
  • [36] Spectral Characterizations of Some Distance-Regular Graphs
    Edwin R. Van Dam
    Willem H. Haemers
    Journal of Algebraic Combinatorics, 2002, 15 : 189 - 202
  • [37] On 3-chromatic distance-regular graphs
    Aart Blokhuis
    Andries E. Brouwer
    Willem H. Haemers
    Designs, Codes and Cryptography, 2007, 44 : 293 - 305
  • [38] FAMILIES OF NESTED COMPLETELY REGULAR CODES AND DISTANCE-REGULAR GRAPHS
    Borges, Joaquim
    Rifa, Josep
    Zinoviev, Victor A.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (02) : 233 - 246
  • [39] Distance-regular graphs with a few q-distance eigenvalues
    Abdullah, Mamoon
    Gebremichel, Brhane
    Hayat, Sakander
    Koolen, Jack H.
    DISCRETE MATHEMATICS, 2024, 347 (05)
  • [40] Distance-regular graphs with complete multipartite μ-graphs and AT4 family
    Jurisic, Aleksandar
    Koolen, Jack
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (04) : 459 - 471