Non-bipartite distance-regular graphs with a small smallest eigenvalue
被引:0
作者:
Qiao, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
Qiao, Zhi
[1
]
Jing, Yifan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USASichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
Jing, Yifan
[2
]
Koolen, Jack
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
Chinese Acad Sci, Wen Tsun Wu Key Lab, Hefei 230026, Anhui, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
Koolen, Jack
[3
,4
]
机构:
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, Wen Tsun Wu Key Lab, Hefei 230026, Anhui, Peoples R China
In 2017, Qiao and Koolen showed that for any fixed integer D >= 3, there are only finitely many non-bipartite distance-regular graphs with theta(min) <= -alpha k, where 0 < alpha < 1 is any fixed number. In this paper, we will study non-bipartite distance-regular graphs with relatively small theta(min) compared with k. In particular, we will show that if theta(min) is relatively close to -k then the odd girth g must be large. Also we will classify the non-bipartite distance-regular graphs with theta(min) <= -D-1/Dk for D = 4, 5.