Non-bipartite distance-regular graphs with a small smallest eigenvalue

被引:0
作者
Qiao, Zhi [1 ]
Jing, Yifan [2 ]
Koolen, Jack [3 ,4 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, Wen Tsun Wu Key Lab, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Distance-regular graphs; Smallest eigenvalue; Odd girth;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2017, Qiao and Koolen showed that for any fixed integer D >= 3, there are only finitely many non-bipartite distance-regular graphs with theta(min) <= -alpha k, where 0 < alpha < 1 is any fixed number. In this paper, we will study non-bipartite distance-regular graphs with relatively small theta(min) compared with k. In particular, we will show that if theta(min) is relatively close to -k then the odd girth g must be large. Also we will classify the non-bipartite distance-regular graphs with theta(min) <= -D-1/Dk for D = 4, 5.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Restrictions on classical distance-regular graphs
    Aleksandar Jurišić
    Janoš Vidali
    Journal of Algebraic Combinatorics, 2017, 46 : 571 - 588
  • [22] Distance-regular graphs with diameter 3 and eigenvalue a2 - c3
    Iqbal, Quaid
    Koolen, Jack H.
    Park, Jongyook
    Rehman, Masood Ur
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 587 (587) : 271 - 290
  • [23] On the Terwilliger algebra of bipartite distance-regular graphs with Δ2=0 and c2=2
    Penjic, Safet
    DISCRETE MATHEMATICS, 2017, 340 (03) : 452 - 466
  • [24] On the Terwilliger algebra of bipartite distance-regular graphs with Δ2=0 and c2=1
    MacLean, Mark S.
    Miklavic, Stefko
    Penjic, Safet
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 496 : 307 - 330
  • [25] Induced forests in some distance-regular graphs
    Gunderson, Karen
    Meagher, Karen
    Morris, Joy
    Pantangi, Venkata Raghu Tej
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 290 - 300
  • [26] Distance-regular graphs and (alpha, beta)-geometries
    Kuijken, Elisabeth
    Tonesi, Cristina
    JOURNAL OF GEOMETRY, 2005, 82 (1-2) : 135 - 145
  • [27] On 3-chromatic distance-regular graphs
    Blokhuis, Aart
    Brouwer, Andries E.
    Haemers, Willem H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 44 (1-3) : 293 - 305
  • [28] Diameter bounds for geometric distance-regular graphs
    Bang, Sejeong
    DISCRETE MATHEMATICS, 2018, 341 (01) : 253 - 260
  • [29] Positivity of Gibbs states on distance-regular graphs
    Voit, Michael
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2023, 26 (01)
  • [30] Sesqui-regular graphs with fixed smallest eigenvalue
    Koolen, Jack H.
    Gebremichel, Brhane
    Yang, Jae Young
    Yang, Qianqian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 668 : 1 - 10