Non-bipartite distance-regular graphs with a small smallest eigenvalue

被引:0
|
作者
Qiao, Zhi [1 ]
Jing, Yifan [2 ]
Koolen, Jack [3 ,4 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, Wen Tsun Wu Key Lab, Hefei 230026, Anhui, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 02期
基金
中国国家自然科学基金;
关键词
Distance-regular graphs; Smallest eigenvalue; Odd girth;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2017, Qiao and Koolen showed that for any fixed integer D >= 3, there are only finitely many non-bipartite distance-regular graphs with theta(min) <= -alpha k, where 0 < alpha < 1 is any fixed number. In this paper, we will study non-bipartite distance-regular graphs with relatively small theta(min) compared with k. In particular, we will show that if theta(min) is relatively close to -k then the odd girth g must be large. Also we will classify the non-bipartite distance-regular graphs with theta(min) <= -D-1/Dk for D = 4, 5.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Non-Bipartite Distance-Regular Graphs with Diameters 5, 6 and a Smallest Eigenvalue
    Li, Jing
    Wang, Yan
    Hou, Bo
    Gao, Weidong
    Gao, Suogang
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [2] Non-Bipartite Distance-Regular Graphs with Diameters 5, 6 and a Smallest Eigenvalue
    Jing Li
    Yan Wang
    Bo Hou
    Weidong Gao
    Suogang Gao
    Graphs and Combinatorics, 2022, 38
  • [3] On distance-regular graphs with smallest eigenvalue at least -m
    Koolen, J. H.
    Bang, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) : 573 - 584
  • [4] Bipartite distance-regular graphs with an eigenvalue of multiplicity k
    Yamazaki, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (01) : 34 - 37
  • [5] Geometric Antipodal Distance-Regular Graphs with a Given Smallest Eigenvalue
    Sejeong Bang
    Graphs and Combinatorics, 2019, 35 : 1387 - 1399
  • [6] Geometric Antipodal Distance-Regular Graphs with a Given Smallest Eigenvalue
    Bang, Sejeong
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1387 - 1399
  • [7] On Bipartite Distance-Regular Cayley Graphs with Small Diameter
    van Dam, Edwin R.
    Jazaeri, Mojtaba
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [8] Distance-regular graphs with a relatively small eigenvalue multiplicity
    Koolen, Jack H.
    Kim, Joohyung
    Park, Jongyook
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [9] Tails of bipartite distance-regular graphs
    Lang, MS
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (08) : 1015 - 1023
  • [10] CODES IN BIPARTITE DISTANCE-REGULAR GRAPHS
    BANNAI, E
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (OCT): : 197 - 202