NONCOMMUTATIVE VERSION OF KOLMOGOROV'S THREE SERIES THEOREM AND SOME LIMIT THEOREMS

被引:0
作者
Klimczak, Katarzyna [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
来源
HOUSTON JOURNAL OF MATHEMATICS | 2014年 / 40卷 / 02期
关键词
von Neumann algebra; three series theorem; 0-1; law; VON-NEUMANN-ALGEBRAS; CONVERGENCE; LAWS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note a noncommutative version of Kolmogorov's Three Series Theorem, concerning unconditional convergence, is given. As a noncommutative counterpart of the classical almost sure convergence the almost uniform convergence of measurable operators is used. We also provide a method of proving theorems on almost uniform convergence in von Neumann algebras. Finally, we give a noncommutative version of the Kolmogorov's 0-1 law and show that (under appropriate assumptions concerning independence) the limit of a convergent sequence of elements of a von Neumann algebra is a multiplicity of identity.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 14 条