Thermal and Tidal Evolution of Uranus with a Growing Frozen Core

被引:25
作者
Stixrude, Lars [1 ]
Baroni, Stefano [2 ,3 ]
Grasselli, Federico [2 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] SISSA Scuola Int Super Studi Avanzati, Trieste, Italy
[3] CNR IOM DEMOCRITOS SISSA, Trieste, Italy
[4] Ecole Polytech Fed Lausanne, COSMO Lab Computat Sci & Modelling, IMX, CH-1015 Lausanne, Switzerland
来源
PLANETARY SCIENCE JOURNAL | 2021年 / 2卷 / 06期
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
URANIAN SATELLITES; WATER; EXOPLANETS; TRANSPORT; OBLIQUITY; DYNAMICS; INTERIOR; ROTATION; AMMONIA; MODELS;
D O I
10.3847/PSJ/ac2a47
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The origin of the very low luminosity of Uranus is unknown, as is the source of the internal tidal dissipation required by the orbits of the Uranian moons. Models of the interior of Uranus often assume that it is inviscid throughout, but recent experiments show that this assumption may not be justified; most of the interior of Uranus lies below the freezing temperature of H2O. We find that the stable solid phase of H2O, which is superionic, has a large viscosity controlled by the crystalline oxygen sublattice. We examine the consequences of finite viscosity by combining ab initio determinations of the thermal conductivity and other material properties of superionic H2O with a thermal evolution model that accounts for heat trapped in the growing frozen core. The high viscosity provides a means of trapping heat in the deep interior while also providing a source of tidal dissipation. The frozen core grows with time because its outer boundary is governed by the freezing transition rather than compositional layering. We find that the presence of a growing frozen core explains the anomalously low heat flow of Uranus. Our thermal evolution model also predicts time-varying tidal dissipation that matches the requirements of the orbits of Miranda, Ariel, and Umbriel. We make predictions that are testable by future space missions, including the tidal Love number of Uranus and the current recessional rates of its moons.
引用
收藏
页数:10
相关论文
共 68 条
[1]   OSCILLATIONS OF THE EARTH [J].
ALTERMAN, Z ;
JAROSCH, H ;
PEKERIS, CL .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 252 (1268) :80-95
[2]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[3]   Thermodynamically Governed Interior Models of Uranus and Neptune [J].
Bailey, Elizabeth ;
Stevenson, David J. .
PLANETARY SCIENCE JOURNAL, 2021, 2 (02)
[4]   Theory and Numerical Simulation of Heat Transport in Multicomponent Systems [J].
Bertossa, Riccardo ;
Grasselli, Federico ;
Ercole, Loris ;
Baroni, Stefano .
PHYSICAL REVIEW LETTERS, 2019, 122 (25)
[5]   Planetary Ices and the Linear Mixing Approximation [J].
Bethkenhagen, M. ;
Meyer, E. R. ;
Hamel, S. ;
Nettelmann, N. ;
French, M. ;
Scheibe, L. ;
Ticknor, C. ;
Collins, L. A. ;
Kress, J. D. ;
Fortney, J. J. ;
Redmer, R. .
ASTROPHYSICAL JOURNAL, 2017, 848 (01)
[6]   Superionic Phases of the 1:1 Water-Ammonia Mixture [J].
Bethkenhagen, Mandy ;
Cebulla, Daniel ;
Redmer, Ronald ;
Hamel, Sebastien .
JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (42) :10582-10588
[7]   The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model [J].
Castillo-Rogez, Julie C. ;
Efroimsky, Michael ;
Lainey, Valery .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[8]   Superionic and metallic states of water and ammonia at giant planet conditions [J].
Cavazzoni, C ;
Chiarotti, GL ;
Scandolo, S ;
Tosatti, E ;
Bernasconi, M ;
Parrinello, M .
SCIENCE, 1999, 283 (5398) :44-46
[9]  
Chandrasekhar S., 2013, Hydrodynamic and Hydromagnetic Stability
[10]   Phase behaviours of superionic water at planetary conditions [J].
Cheng, Bingqing ;
Bethkenhagen, Mandy ;
Pickard, Chris J. ;
Hamel, Sebastien .
NATURE PHYSICS, 2021, 17 (11) :1228-+