The thermal shock behavior of Zr3[Al(Si)]4C6 and in situ (ZrB2 + ZrC)/Zr3[Al(Si)]4C6 composite

被引:4
作者
Yu, Lei [1 ]
Yang, Jian [1 ]
Qiu, Tai [1 ]
Pan, Limei [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
(ZrB2 + ZrC)/Zr-3[Al(Si)](4)C-6; Thermal shock resistance; Ultra high-temperature ceramics; Mechanical properties; Thermal conductivity; MECHANICAL-PROPERTIES; THERMOPHYSICAL PROPERTIES; ZRB2-SIC CERAMICS; C CERAMICS; COMPOSITES; RESISTANCE; MICROSTRUCTURE; STRENGTH; CARBIDE; ALUMINA;
D O I
10.1016/j.jallcom.2014.06.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A water-quenching technique was adopted to evaluate the thermal shock behavior of monolithic Zr-3[Al(Si)](4)C-6 ceramic and in situ 30 vol.% (ZrB2 + ZrC)/Zr-3[Al(Si)]4C6 composite in air. The strength retention of specimens was measured after varying temperature difference up to 800 degrees C. The critical thermal shock temperature difference (Delta T-c) increases from 225 degrees C for Zr-3[Al(Si)](4)C-6 to 330 degrees C for the composite. The calculation results also indicate a much higher thermal stress fracture resistance parameter (R), thermal stress damage resistance parameter (R-IV), and thermal stress crack stability parameter (R-st) for the composite. Compared with Zr-3[Al(Si](4)C-6, the significantly improved thermal shock resistance of the composite should be attributed to the increase in thermal conductivity and the significant strengthening and toughening effect such as particulate reinforcement, grain's pull-out, crack bridging, deflection and branching, and microcracks derived by the in situ incorporation of ZrB2 and ZrC. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 26 条
[1]   First-principle calculations of thermodynamic properties of ZrC and ZrN at high pressures and high temperatures [J].
Abdollahi, Arash .
PHYSICA B-CONDENSED MATTER, 2013, 410 :57-62
[2]   Thermal shock behaviour of magnesia-spinel composites [J].
Aksel, C ;
Rand, B ;
Riley, FL ;
Warren, PD .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (09) :2839-2845
[3]  
BECHER PF, 1980, AM CERAM SOC BULL, V59, P542
[4]  
Fukuda K, 2007, J MATER RES, V22, P2888, DOI [10.1557/jmr.2007.0372, 10.1557/JMR.2007.0372]
[5]   Role of impurities on the spark plasma sintering of ZrCx-ZrB2 composites [J].
Goutier, F. ;
Trolliard, G. ;
Valette, S. ;
Maitre, A. ;
Estournes, C. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (03) :671-678
[7]   UNIFIED THEORY OF THERMAL SHOCK FRACTURE INITIATION AND CRACK PROPAGATION IN BRITTLE CERAMICS [J].
HASSELMAN, PH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1969, 52 (11) :600-+
[8]   High-temperature internal friction, stiffness and strength of Zr-Al(Si)-C ceramics [J].
He, L. F. ;
Lu, X. P. ;
Bao, Y. W. ;
Wang, J. Y. ;
Zhou, Y. C. .
SCRIPTA MATERIALIA, 2009, 61 (01) :60-63
[9]   Oxidation of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 in air [J].
He, L. F. ;
Bao, Y. W. ;
Li, M. S. ;
Wang, J. Y. ;
Zhou, Y. C. .
JOURNAL OF MATERIALS RESEARCH, 2008, 23 (12) :3339-3346
[10]   Mechanical and Thermophysical Properties of Zr-Al-Si-C Ceramics [J].
He, Ling-Feng ;
Bao, Yi-Wang ;
Wang, Jing-Yang ;
Li, Mei-Shuan ;
Zhou, Yan-Chun .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (02) :445-451