Traveling waves in 2D hexagonal granular crystal lattices

被引:49
作者
Leonard, A. [1 ]
Chong, C. [2 ]
Kevrekidis, P. G. [2 ]
Daraio, C. [3 ,4 ]
机构
[1] CALTECH, Dept Civil & Mech Engn, Pasadena, CA 91125 USA
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] ETH, Dept Mech & Proc Engn D MAVT, CH-8092 Zurich, Switzerland
[4] CALTECH, Dept Aerosp Engn GALCIT, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
2D Hexagonal; Highly nonlinear; Ternary collision approximation (TCA); Impulsive excitation; Weak disorder; DISCRETE BREATHERS; SOUND-PROPAGATION; SOLITARY WAVES; CHAIN; PULSE; VELOCITY;
D O I
10.1007/s10035-014-0487-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study describes the dynamic response of a two-dimensional hexagonal packing of uncompressed stainless steel spheres excited by localized impulsive loadings. The dynamics of the system are modeled using the Hertzian normal contact law. After the initial impact strikes the system, a characteristic wave structure emerges and continuously decays as it propagates through the lattice. Using an extension of the binary collision approximation for one-dimensional chains, we predict its decay rate, which compares well with numerical simulations and experimental data. While the hexagonal lattice does not support constant speed traveling waves, we provide scaling relations that characterize the directional power law decay of the wave velocity for various angles of impact. Lastly, we discuss the effects of weak disorder on the directional amplitude decay rates.
引用
收藏
页码:531 / 542
页数:12
相关论文
共 63 条
[1]   Force propagation speed in a bed of particles due to an incident particle impact [J].
Abd-Elhady, M. S. ;
Abd-Elhady, S. ;
Rindt, C. C. M. ;
van Steenhoven, A. A. .
ADVANCED POWDER TECHNOLOGY, 2010, 21 (02) :150-164
[2]   Conical diffraction in honeycomb lattices [J].
Ablowitz, Mark J. ;
Nixon, Sean D. ;
Zhu, Yi .
PHYSICAL REVIEW A, 2009, 79 (05)
[3]   Compactons and chaos in strongly nonlinear lattices [J].
Ahnert, Karsten ;
Pikovsky, Arkady .
PHYSICAL REVIEW E, 2009, 79 (02)
[4]   Elastic wave propagation in a three-dimensional periodic granular medium [J].
Anfosso, J ;
Gibiat, V .
EUROPHYSICS LETTERS, 2004, 67 (03) :376-382
[5]  
Antonakakis T., 2012, P R SOC A, V469, P1
[6]  
Awasthi A.P., 2012, MECH MATER, V54
[7]   Breakdown of Dirac dynamics in honeycomb lattices due to nonlinear interactions [J].
Bahat-Treidel, Omri ;
Peleg, Or ;
Segev, Mordechai ;
Buljan, Hrvoje .
PHYSICAL REVIEW A, 2010, 82 (01)
[8]   Dynamic stress bridging in granular material [J].
Bardenhagen, SG ;
Brackbill, JU .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) :5732-5740
[9]  
Boechler N, 2011, NAT MATER, V10, P665, DOI [10.1038/nmat3072, 10.1038/NMAT3072]
[10]   Asymptotic analysis of combined breather-kink modes in a Fermi-Pasta-Ulam chain [J].
Butt, Imran A. ;
Wattis, Jonathan A. D. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (02) :165-179