Generation of robust tripartite entanglement with a single-cavity optomechanical system

被引:34
作者
Yang, Xihua [1 ]
Ling, Yang [1 ]
Shao, Xuping [1 ]
Xiao, Min [2 ,3 ,4 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
SCALABLE QUANTUM COMMUNICATION; RADIATION PRESSURE; ATOMIC ENSEMBLES; MOVABLE MIRRORS;
D O I
10.1103/PhysRevA.95.052303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a proposal to generate robust tripartite optomechanical entanglement with a single-cavity optomechanical system driven by a single input laser field. The produced stationary tripartite entanglement among two longitudinal cavity modes and a mirror oscillation mode via radiation pressure force exhibits robustness to the variation of the environment temperature when the cavity free spectral range is close to the mechanical oscillation frequency. The present optomechanical system can serve as an alternative intermediary for quantum-state exchange between two microwave (or optical) fields as well as between photons and the macroscopic mechanical oscillator, and may be potentially useful for quantum information processing and quantum networks.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   QUANTUM LANGEVIN EQUATION [J].
BENGURIA, R ;
KAC, M .
PHYSICAL REVIEW LETTERS, 1981, 46 (01) :1-4
[4]  
Bouweester D., 2000, PHYS QUANTUM INFORM
[5]   Entangled images from four-wave mixing [J].
Boyer, Vincent ;
Marino, Alberto M. ;
Pooser, Raphael C. ;
Lett, Paul D. .
SCIENCE, 2008, 321 (5888) :544-547
[6]   Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity [J].
Cheung, H. K. ;
Law, C. K. .
PHYSICAL REVIEW A, 2011, 84 (02)
[7]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[8]   Theoretical Analysis of Mechanical Displacement Measurement Using a Multiple Cavity Mode Transducer [J].
Dobrindt, J. M. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[9]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725
[10]   Quantum Effects in Optomechanical Systems [J].
Genes, C. ;
Mari, A. ;
Vitali, D. ;
Tombesi, P. .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 57, 2009, 57 :33-86