Densely integrated Co, N-Codoped Graphene@Carbon nanotube porous hybrids for high-performance lithium-sulfur batteries

被引:56
作者
Cheng, Dongdong [1 ]
Zhao, Yelin [1 ]
Tang, Xingwei [1 ]
An, Tong [1 ]
Wang, Xin [1 ]
Zhou, Han [1 ]
Zhang, Di [1 ]
Fan, Tongxiang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
NITROGEN-DOPED GRAPHENE; CATALYTIC GROWTH; CATHODE; SHEETS; ARCHITECTURE; COMPOSITE; NETWORKS; FOAM;
D O I
10.1016/j.carbon.2019.04.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Design and synthesis of multifunctional sulfur hosts with comprehensively addressed conductivity, porosity and polarity is vital but challenging in the development of high-performance lithium-sulfur batteries. In this work, densely integrated Co,N-codoped graphene@carbon nanotubes porous hybrids (Co,N-G@CNT) are prepared as high-efficiency sulfur hosts for lithium sulfur batteries via reductive pyrolysis of (Co,Zn)-bimetallic zeolitic imidazolate frameworks separated graphene oxide sheets. The obtained Co,N-G@CNT possesses 3D interconnected conductive network, large nanopore volume and high accessible surface area as well as enriched doping sites, which endow the carbon matrix multifaceted abilities for sulfur accommodation and electron/ion transfer as well as polysulfides immobilization. Due to the rational structure design of the host material, the Co,N-G@CNT/S composite exhibits high sulfur utilization (1398 mA h g(-1) at 0.2C), excellent rate capability (611 mA h g(-1) at 6 C) as well as remarkable cycling stability (retained 659 mA h g(-1) at 1C after 1500 cycles). This work provides a new perspective to function-directed structure design of sulfur hosts for lithium-sulfur batteries, and also holds great promise for the application in other energy storage/conversion systems such as metal air batteries, supercapacitors, and electrochemical catalysts. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:750 / 759
页数:10
相关论文
共 59 条
[1]   Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions [J].
Borchardt, Lars ;
Oschatz, Martin ;
Kaskel, Stefan .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (22) :7324-7351
[2]   High-Quality Graphene Microflower Design for High-Performance Li-S and Al-Ion Batteries [J].
Chen, Hao ;
Chen, Chen ;
Liu, Yingjun ;
Zhao, Xiaoli ;
Ananth, Nimrodh ;
Zheng, Bingna ;
Peng, Li ;
Huang, Tieqi ;
Gao, Weiwei ;
Gao, Chao .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[3]   Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries [J].
Chen, Renjie ;
Zhao, Teng ;
Lu, Jun ;
Wu, Feng ;
Li, Li ;
Chen, Junzheng ;
Tan, Guoqiang ;
Ye, Yusheng ;
Amine, Khalil .
NANO LETTERS, 2013, 13 (10) :4642-4649
[4]   Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction [J].
Chen, Ziliang ;
Wu, Renbing ;
Liu, Yang ;
Ha, Yuan ;
Guo, Yanhui ;
Sun, Dalin ;
Liu, Miao ;
Fang, Fang .
ADVANCED MATERIALS, 2018, 30 (30)
[5]   Synergetic pore structure optimization and nitrogen doping of 3D porous graphene for high performance lithium sulfur battery [J].
Cheng, Dongdong ;
Wu, Pingping ;
Wang, Jingwen ;
Tang, Xingwei ;
An, Tong ;
Zhou, Han ;
Zhang, Di ;
Fan, Tongxiang .
CARBON, 2019, 143 :869-877
[6]   A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium-sulfur batteries [J].
Deng, Wei ;
Zhou, Xufeng ;
Fang, Qile ;
Liu, Zhaoping .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) :13674-13682
[7]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[8]  
Fang R., 2018, ADV MATER
[9]   A Revolution in Electrodes: Recent Progress in Rechargeable Lithium-Sulfur Batteries [J].
Fang, Xin ;
Peng, Huisheng .
SMALL, 2015, 11 (13) :1488-1511
[10]   Graphene/Sulfur Hybrid Nanosheets from a Space-Confined "Sauna" Reaction for High-Performance Lithium-Sulfur Batteries [J].
Fei, Linfeng ;
Li, Xiaogang ;
Bi, Wentuan ;
Zhuo, Zhiwen ;
Wei, Wenfei ;
Sun, Li ;
Lu, Wei ;
Wu, Xiaojun ;
Xie, Keyu ;
Wu, Changzheng ;
Chan, Helen L. W. ;
Wang, Yu .
ADVANCED MATERIALS, 2015, 27 (39) :5936-5942