Variable selection for nonparametric quantile regression via measurement error model

被引:0
|
作者
Lai, Peng [1 ]
Yan, Xi [1 ]
Sun, Xin [1 ]
Pang, Haozhe [1 ]
Zhou, Yanqiu [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable selection; Nonparametric quantile regression; Measurement error model; Gaussian product kernel; EFFICIENT ESTIMATION;
D O I
10.1007/s00362-022-01376-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a variable selection procedure for the nonparametric quantile regression based on the measurement error model (MEM). The "false" Gaussian measurement error is forced into the covariates to construct a nonparametric quantile regression loss function with the MEM framework. Under this MEM framework, the variable selection procedure is completed, and the asymptotic normality of the estimates and the consistency of variable selection are verified. Some Monte Carlo simulations and a real data application are conducted to evaluate the performance of the proposed procedure.
引用
收藏
页码:2207 / 2224
页数:18
相关论文
共 50 条
  • [1] Variable selection for nonparametric quantile regression via measurement error model
    Peng Lai
    Xi Yan
    Xin Sun
    Haozhe Pang
    Yanqiu Zhou
    Statistical Papers, 2023, 64 : 2207 - 2224
  • [2] Variable Selection in Nonparametric Classification Via Measurement Error Model Selection Likelihoods
    Stefanski, L. A.
    Wu, Yichao
    White, Kyle
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (506) : 574 - 589
  • [3] Variable selection in quantile regression via Gibbs sampling
    Alhamzawi, Rahim
    Yu, Keming
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (04) : 799 - 813
  • [4] Variable selection for ultra-high dimensional quantile regression with missing data and measurement error
    Bai, Yongxin
    Tian, Maozai
    Tang, Man-Lai
    Lee, Wing-Yan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 129 - 150
  • [5] VARIABLE SELECTION IN QUANTILE REGRESSION
    Wu, Yichao
    Liu, Yufeng
    STATISTICA SINICA, 2009, 19 (02) : 801 - 817
  • [6] Quantile Regression With Measurement Error
    Wei, Ying
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1129 - 1143
  • [7] SIMEX estimation for quantile regression model with measurement error
    Yang, Yiping
    Zhao, Peixin
    Wu, Dongsheng
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 545 - 552
  • [8] Variable selection via composite quantile regression with dependent errors
    Tang, Yanlin
    Song, Xinyuan
    Zhu, Zhongyi
    STATISTICA NEERLANDICA, 2015, 69 (01) : 1 - 20
  • [9] Heteroscedasticity identification and variable selection via multiple quantile regression
    Wang, Mingqiu
    Kang, Xiaoning
    Liang, Jiajuan
    Wang, Kun
    Wu, Yuanshan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (02) : 297 - 314
  • [10] Variable selection in nonparametric additive quantile regression for genetic or genomic data with a priori information
    Wu, Peitao
    Dupuis, Josee
    Liu, Ching-Ti
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 527 - 528