Adaptive mesh refinement for the time-dependent nodal integral method

被引:1
作者
Toreja, AJ [1 ]
Rizwan-uddin [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Nucl Engn Lab 214, MC 234,103 S Goodwin Ave, Urbana, IL 61801 USA
关键词
D O I
10.13182/NSE02-A2290
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Adaptive mesh refinement capability has been developed and implemented for the time-dependent nodal integral method (NIM). The combination of adaptive mesh refinement (AMR) with the NIM maintains the coarse mesh efficiency of the nodal method by allowing high resolution only in regions where it is needed Furthermore, exploiting certain features of the nodal method, such as using transverse-integrated variables for efficient error estimation and using node interior reconstruction to develop accurate interpolation operators, can enhance the AMR process. In this work, the NIM-AMR is formally developed, and applications of the NIM-AMR to convection-diffusion problems are presented Results show that for a given accuracy, the NIM-AMR can be several times faster than the NIM alone.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 26 条
[1]  
AZMY YY, 1982, THESIS U ILLINOIS UR
[2]   AN ALGORITHM FOR POINT CLUSTERING AND GRID GENERATION [J].
BERGER, M ;
RIGOUTSOS, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05) :1278-1286
[3]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[4]  
Bryan G. L., 2000, STRUCTURED ADAPTIVE, P165
[5]   NON-DIFFUSIVE N+2 DEGREE PETROV-GALERKIN METHODS FOR 2-DIMENSIONAL TRANSIENT TRANSPORT COMPUTATIONS [J].
CANTEKIN, ME ;
WESTERINK, JJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 30 (03) :397-418
[6]   Numerical methods for contaminant transport in rivers and estuaries [J].
Croucher, AE ;
O'Sullivan, MJ .
COMPUTERS & FLUIDS, 1998, 27 (08) :861-878
[7]   FINITE-DIFFERENCE SOLUTIONS OF CONVECTION-DIFFUSION PROBLEMS IN IRREGULAR DOMAINS, USING A NONORTHOGONAL COORDINATE TRANSFORMATION [J].
FAGHRI, M ;
SPARROW, EM ;
PRATA, AT .
NUMERICAL HEAT TRANSFER, 1984, 7 (02) :183-209
[8]  
FISHER HD, 1981, ATOMKERNENERG/KERNT, V39, P229
[9]   CONSERVATIVE VERSIONS OF THE LOCALLY EXACT CONSISTENT UPWIND SCHEME OF 2ND-ORDER (LECUSSO-SCHEME) [J].
GUNTHER, C .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 34 (03) :793-804
[10]  
GUNTHER CL, 1988, COMP TECH APPL CTAC, V87, P447