From marginal to conditional probability functions of parameters in a conceptual rainfall-runoff model: an event-based approach

被引:1
作者
Sandoval, Santiago [1 ]
Bertrand-Krajewski, Jean-Luc [1 ]
机构
[1] Univ Lyon, Lab Deep Wastewater Environm Pollut DEEP EA 7429, Inst Natl Sci Appl INSA Lyon, Villeurbanne, France
关键词
Bayesian method; bimodal distribution; calibration strategies; graph clustering; parameter variability; uncertainty reduction; HYDROLOGICAL MODELS; BAYESIAN-APPROACH; UNCERTAINTY; CALIBRATION; TIME; GLUE; OPTIMIZATION; SENSITIVITY; SEWER;
D O I
10.1080/02626667.2019.1635696
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
A parameter estimation strategy for a conceptual rainfall-runoff (CRR) model applied to a storm sewer system in an urban catchment (Chassieu, Lyon, France) is proposed on the basis of event-by-event Bayesian local calibrations. The marginal distribution formed by locally-estimated parameters is divided into conditional functions, clustering the event-based parameters based on their transferability to similar rainfall events. The conditional functions showed to be consistent with an observed bimodality in the marginal representation, reflecting two different hydrological conditions mainly related to the magnitude of the rainfall intensities (high or low). The improvements achieved by expressing the parameter probability functions into a conditional form are shown in terms of accuracy (Nash-Sutcliffe efficiency criterion), precision (average relative interval length) and reliability (percentage of coverage) for simulating flow rate in 255 and 110 calibration/verification events.
引用
收藏
页码:1340 / 1350
页数:11
相关论文
共 57 条
[1]   Improved Runoff Estimation Using Event-Based Rainfall-Runoff Models [J].
Ajmal, Muhammad ;
Waseem, Muhammad ;
Ahn, Jae-Hyun ;
Kim, Tae-Woong .
WATER RESOURCES MANAGEMENT, 2015, 29 (06) :1995-2010
[2]   Robust estimation of hydrological model parameters [J].
Bardossy, A. ;
Singh, S. K. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2008, 12 (06) :1273-1283
[3]   THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION [J].
BEVEN, K ;
BINLEY, A .
HYDROLOGICAL PROCESSES, 1992, 6 (03) :279-298
[4]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[5]   Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? [J].
Brigode, Pierre ;
Oudin, Ludovic ;
Perrin, Charles .
JOURNAL OF HYDROLOGY, 2013, 476 :410-425
[6]   Parsimonious hydrological modeling of urban sewer and river catchments [J].
Coutu, Sylvain ;
Del Giudice, Dario ;
Rossi, Luca ;
Barry, D. A. .
JOURNAL OF HYDROLOGY, 2012, 464 :477-484
[7]  
Csardi G., 2006, INTERJOURNAL COMPLEX, V1695, P1, DOI DOI 10.3724/SP.J.1087.2009.02191
[8]  
De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO
[9]  
2
[10]   Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation [J].
Del Giudice, Dario ;
Albert, Carlo ;
Rieckermann, Jorg ;
Reichert, Peter .
WATER RESOURCES RESEARCH, 2016, 52 (04) :3162-3186