Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding

被引:80
作者
Alekshun, MN
Kim, YS
Levy, SB
机构
[1] Tufts Univ, Sch Med, Ctr Adaptat Genet & Drug Resistance, Boston, MA 02111 USA
[2] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
[3] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA
关键词
D O I
10.1046/j.1365-2958.2000.01802.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MarR, the negative regulator of the Escherichia coli multiple antibiotic resistance (marRAB) operon, is a member of a newly recognized family of regulatory proteins. The amino acid sequences of these proteins do not display any apparent homologies to the DNA binding domains of prokaryotic transcription regulators and a DNA binding motif for any one of the MarR homologues is currently unknown. In order to define regions of MarR required for DNA binding, mutant repressors, selected based on their ability to interfere with (negatively complement) the activity of wild-type MarR, were isolated. As determined using gel mobility shift assays, 13 out of 14 negative complementing mutants tested were unable to bind DNA in vitro. Three negative complementing alleles presumably specify truncated repressors and one of these proteins, a 120 residue MarR, can bind DNA in vitro. Most of the negative complementing mutations were clustered within two areas of MarR with features related to a helix-turn-helix DNA binding motif. These regions are presumed to be required for the DNA binding activity of the repressor.
引用
收藏
页码:1394 / 1404
页数:11
相关论文
共 50 条
[1]   HOW LAC REPRESSOR BINDS TO DNA [J].
ADLER, K ;
BEYREUTHER, K ;
SCHMITZ, A ;
PFAHL, M ;
GEISLER, N ;
FANNING, E ;
GRONENBORN, B ;
KLEMM, A ;
MULLERHI.B .
NATURE, 1972, 237 (5354) :322-+
[2]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[3]   Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro [J].
Alekshun, MN ;
Levy, SB .
JOURNAL OF BACTERIOLOGY, 1999, 181 (15) :4669-4672
[4]   Characterization of MarR superrepressor mutants [J].
Alekshun, MN ;
Levy, SB .
JOURNAL OF BACTERIOLOGY, 1999, 181 (10) :3303-3306
[5]   REPRESSOR MUTATIONS IN THE MARRAB OPERON THAT ACTIVATE OXIDATIVE STRESS GENES AND MULTIPLE ANTIBIOTIC-RESISTANCE IN ESCHERICHIA-COLI [J].
ARIZA, RR ;
COHEN, SP ;
BACHHAWAT, N ;
LEVY, SB ;
DEMPLE, B .
JOURNAL OF BACTERIOLOGY, 1994, 176 (01) :143-148
[6]   Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli [J].
Asako, H ;
Nakajima, H ;
Kobayashi, K ;
Kobayashi, M ;
Aono, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (04) :1428-1433
[8]  
BRANDON C, 1991, INTRO PROTEIN STRUCT, P85
[9]   STRUCTURE OF ARC REPRESSOR IN SOLUTION - EVIDENCE FOR A FAMILY OF BETA-SHEET DNA-BINDING PROTEINS [J].
BREG, JN ;
VANOPHEUSDEN, JHJ ;
BURGERING, MJM ;
BOELENS, R ;
KAPTEIN, R .
NATURE, 1990, 346 (6284) :586-589
[10]   Purification and ligand binding of EmrR, a regulator of a multidrug transporter [J].
Brooun, A ;
Tomashek, JJ ;
Lewis, K .
JOURNAL OF BACTERIOLOGY, 1999, 181 (16) :5131-5133