Functional inversion for potentials in quantum mechanics

被引:3
|
作者
Hall, RL [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0375-9601(99)00872-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let E = F(v) be the ground-state eigenvalue of the Schrodinger Hamiltonian H = - Delta + vf(x), where the potential shape f(x) is symmetric and monotone increasing for x > 0, and the coupling parameter v is positive. if the kinetic potential (f) over bar(s) associated with f(x) is defined by the transformation (f) over bar(s)= F(v), s = F(v)- vF'(v), then f can be reconstructed from F by the sequence f([n+1]) = (f) over bar . (f) over bar([n]-1) . f([n]) Convergence is proved for special classes of potential shape; for other test cases it is demonstrated numerically. The seed potential shape f([0]) need not be 'close' to the limit f. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:28 / 34
页数:7
相关论文
共 50 条