Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS2, MoS2, and WSe2

被引:144
作者
Blundo, E. [1 ]
Felici, M. [1 ]
Yildirim, T. [2 ]
Pettinari, G. [3 ]
Tedeschi, D. [1 ]
Miriametro, A. [1 ]
Liu, B. [2 ]
Ma, W. [2 ]
Lu, Y. [2 ,4 ]
Polimeni, A. [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Fis, I-00185 Rome, Italy
[2] Australian Natl Univ, Coll Engn & Comp Sci, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
[3] CNR, Inst Photon & Nanotechnol, I-00156 Rome, Italy
[4] ARC Ctr Excellence Future Low Energy Elect Techno, Canberra, ACT 2601, Australia
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
基金
澳大利亚研究理事会; 欧盟地平线“2020”;
关键词
MONOLAYER;
D O I
10.1103/PhysRevResearch.2.012024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a strain-induced direct-to-indirect band gap transition in mechanically deformed WS2 monolayers (MLs). The necessary amount of strain is attained by proton irradiation of bulk WS2 and the ensuing formation of 1-ML-thick, H-2-filled domes. The electronic properties of the curved MLs are mapped by spatially and time-resolved microphotoluminescence, revealing the mechanical stress conditions that trigger the variation of the band gap character. This general phenomenon, also observed in MoS2 and WSe2, further increases our understanding of the electronic structure of transition metal dichalcogenide MLs and holds a great relevance for their optoelectronic applications.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Strain engineering of WS2, WSe2, and WTe2 [J].
Amin, B. ;
Kaloni, T. P. ;
Schwingenschloegl, U. .
RSC ADVANCES, 2014, 4 (65) :34561-34565
[2]   Novel effects of strains in graphene and other two dimensional materials [J].
Amorim, B. ;
Cortijo, A. ;
de Juan, F. ;
Grushine, A. G. ;
Guinea, F. ;
Gutierrez-Rubio, A. ;
Ochoa, H. ;
Parente, V. ;
Roldan, R. ;
San-Jose, P. ;
Schiefele, J. ;
Sturla, M. ;
Vozmediano, M. A. H. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 :1-54
[3]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[4]   Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain [J].
Chang, Chung-Huai ;
Fan, Xiaofeng ;
Lin, Shi-Hsin ;
Kuo, Jer-Lai .
PHYSICAL REVIEW B, 2013, 88 (19)
[5]   Intrinsic Properties of Suspended MoS2 on SiO2/Si Pillar Arrays for Nanomechanics and Optics [J].
Chaste, Julien ;
Missaoui, Amine ;
Huang, Si ;
Henck, Hugo ;
Ben Aziza, Zeineb ;
Ferlazzo, Laurence ;
Naylor, Carl ;
Balan, Adrian ;
Johnson, Alan T. Charlie, Jr. ;
Braive, Remy ;
Ouerghi, Abdelkarim .
ACS NANO, 2018, 12 (04) :3235-3242
[6]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[7]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[8]   Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides [J].
Dadgar, A. M. ;
Scullion, D. ;
Kang, K. ;
Esposito, D. ;
Yang, E. H. ;
Herman, I. P. ;
Pimenta, M. A. ;
Santos, E. J. G. ;
Pasupathy, A. N. .
CHEMISTRY OF MATERIALS, 2018, 30 (15) :5148-5155
[9]   Strain Engineering of 2D Materials: Issues and Opportunities at the Interface [J].
Dai, Zhaohe ;
Liu, Luqi ;
Zhang, Zhong .
ADVANCED MATERIALS, 2019, 31 (45)
[10]   Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO [J].
Das, Ruma ;
Rakshit, Bipul ;
Debnath, Saikat ;
Mahadevan, Priya .
PHYSICAL REVIEW B, 2014, 89 (11)