In this study, the explicit estimators of the model parameters in oneway classification AR(1) model with gamma innovations are derived by using modified maximum likelihood (MML) methodology. We also propose a new test statistic for testing linear contrasts. Monte Carlo simulation results show that the MML estimators have higher efficiencies than the traditional least squares (LS) estimators and the proposed test has much better power and robustness properties than the normal theory test.
机构:
Univ Iowa, Dept Econ, Iowa City, IA 52242 USAUniv Iowa, Dept Econ, Iowa City, IA 52242 USA
Galvao, Antonio F.
Montes-Rojas, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ San Andres, CONICET, Buenos Aires, DF, Argentina
City Univ London, Dept Econ, London EC1V 0HB, EnglandUniv Iowa, Dept Econ, Iowa City, IA 52242 USA
Montes-Rojas, Gabriel
Sosa-Escudero, Walter
论文数: 0引用数: 0
h-index: 0
机构:
Univ San Andres, Dept Econ, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, ArgentinaUniv Iowa, Dept Econ, Iowa City, IA 52242 USA
Sosa-Escudero, Walter
Wang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Econ, Milwaukee, WI 53201 USAUniv Iowa, Dept Econ, Iowa City, IA 52242 USA