PROJECTED DYNAMICS OF CONSTRAINED HAMILTONIAN SYSTEMS

被引:0
作者
Gromov, Dmitry [1 ]
Castanos, Fernando [2 ]
Fradkov, Alexander L. [3 ,4 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, St Petersburg, Russia
[2] CINVESTAV, IPN, Automat Control Dept, Mexico City, DF, Mexico
[3] RAS, IPME, St Petersburg, Russia
[4] ITMO Univ, St Petersburg, Russia
来源
2018 EUROPEAN CONTROL CONFERENCE (ECC) | 2018年
基金
俄罗斯科学基金会;
关键词
PASSIVITY-BASED CONTROL; IMPLICIT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel formulation for the description of implicit port-Hamiltonian control systems is proposed and its potential use for the design of the control laws stabilizing a given submanifold described as a zero level set of an admissible energy function is shown. Using the developed formulation, a number of results on the stabilization of port-Hamiltonian systems are presented. The obtained results are formulated in a way that allows for direct application.
引用
收藏
页码:1277 / 1281
页数:5
相关论文
共 22 条
[1]  
Andrievskii BR, 1996, AUTOMAT REM CONTR+, V57, P456
[2]  
[Anonymous], 2005, EQUILIBRIUM THERMODY
[3]  
Arnold V I, 2006, MATH ASPECTS CLASSIC
[4]   Swinging up a pendulum by energy control [J].
Åström, KJ ;
Furuta, K .
AUTOMATICA, 2000, 36 (02) :287-295
[5]   Geometric modeling of nonlinear RLC circuits [J].
Blankenstein, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (02) :396-404
[6]   Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints [J].
Castanos, Fernando ;
Gromov, Dmitry .
SYSTEMS & CONTROL LETTERS, 2016, 94 :11-18
[7]   Implicit and explicit representations of continuous-time port-Hamiltonian systems [J].
Castanos, Fernando ;
Gromov, Dmitry ;
Hayward, Vincent ;
Michalska, Hannah .
SYSTEMS & CONTROL LETTERS, 2013, 62 (04) :324-330
[8]   Nonsmooth and discontinuous speed-gradient algorithms [J].
Dolgopolik, M. V. ;
Fradkov, A. L. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 25 :99-113
[9]  
Fantoni Isabelle, 2002, Non-linear Control for Underactuated Mechanical Systems
[10]   Swinging control of nonlinear oscillations [J].
Fradkov, AL .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (06) :1189-1202