Bioactivity of Farnesyltransferase Inhibitors Against Entamoeba histolytica and Schistosoma mansoni

被引:13
作者
Probst, Alexandra [1 ]
Nguyen, Thi N. [1 ]
El-Sakkary, Nelly [1 ]
Skinner, Danielle [1 ]
Suzuki, Brian M. [1 ]
Buckner, Frederick S. [2 ]
Gelb, Michael H. [3 ,4 ]
Caffrey, Conor R. [1 ]
Debnath, Anjan [1 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, Ctr Discovery & Innovat Parasit Dis, La Jolla, CA 92093 USA
[2] Univ Washington, Dept Med, Ctr Emerging & Reemerging Infect Dis, Div Allergy & Infect Dis, Seattle, WA USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[4] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
Entamoeba histolytica; Schistosoma mansoni; farnesyltransferase; metronidazole; lonafarnib; tipifarnib; statin; chemotherapy; PROTEIN FARNESYLTRANSFERASE; METRONIDAZOLE RESISTANCE; HETEROLOGOUS EXPRESSION; MOLECULAR-MECHANISMS; SUPEROXIDE-DISMUTASE; STATIN THERAPY; CANCER DRUG; PRENYLATION; CLONING; CULTIVATION;
D O I
10.3389/fcimb.2019.00180
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The protozoan parasite Entamoeba histolytica can induce amebic colitis and amebic liver abscess. First-line drugs for the treatment of amebiasis are nitroimidazoles, particularly metronidazole. Metronidazole has side effects and potential drug resistance is a concern. Schistosomiasis, a chronic and painful infection, is caused by various species of the Schistosoma flatworm. There is only one partially effective drug, praziquantel, a worrisome situation should drug resistance emerge. As many essential metabolic pathways and enzymes are shared between eukaryotic organisms, it is possible to conceive of small molecule interventions that target more than one organism or target, particularly when chemical matter is already available. Farnesyltransferase (FT), the last common enzyme for products derived from the mevalonate pathway, is vital for diverse functions, including cell differentiation and growth. Both E. histolytica and Schistosoma mansoni genomes encode FT genes. In this study, we phenotypically screened E. histolytica and S. mansoni in vitro with the established FT inhibitors, lonafarnib and tipifarnib, and with 125 tipifarnib analogs previously screened against both the whole organism and/or the FT of Trypanosoma brucei and Trypanosoma cruzi. For E. histolytica, we also explored whether synergy arises by combining lonafarnib and metronidazole or lonafarnib with statins that modulate protein prenylation. We demonstrate the anti-amebic and anti-schistosomal activities of lonafarnib and tipifarnib, and identify 17 tipifarnib analogs with more than 75% growth inhibition at 50 mu M against E. histolytica. Apart from five analogs of tipifarnib exhibiting activity against both E. histolytica and S. mansoni, 10 additional analogs demonstrated anti-schistosomal activity (severe degenerative changes at 10 mu M after 24 h). Analysis of the structure-activity relationship available for the T. brucei FT suggests that FT may not be the relevant target in E. histolytica and S. mansoni. For E. histolytica, combination of metronidazole and lonafarnib resulted in synergism for growth inhibition. Also, of a number of statins tested, simvastatin exhibited moderate anti-amebic activity which, when combined with lonafarnib, resulted in slight synergism. Even in the absence of a definitive molecular target, identification of potent anti-parasitic tipifarnib analogs encourages further exploration while the synergistic combination of metronidazole and lonafarnib offers a promising treatment strategy for amebiasis.
引用
收藏
页数:12
相关论文
共 58 条
[1]   Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening [J].
Abdulla, Maha-Hamadien ;
Ruelas, Debbie S. ;
Wolff, Brian ;
Snedecor, June ;
Lim, Kee-Chong ;
Xu, Fengyun ;
Renslo, Adam R. ;
Williams, Janice ;
McKerrow, James H. ;
Caffrey, Conor R. .
PLOS NEGLECTED TROPICAL DISEASES, 2009, 3 (07)
[2]   PRAZIQUANTEL [J].
ANDREWS, P ;
THOMAS, H ;
POHLKE, R ;
SEUBERT, J .
MEDICINAL RESEARCH REVIEWS, 1983, 3 (02) :147-200
[3]   The QDREC web server: determining dose-response characteristics of complex macroparasites in phenotypic drug screens [J].
Asarnow, Daniel ;
Rojo-Arreola, Liliana ;
Suzuki, Brian M. ;
Caffrey, Conor R. ;
Singh, Rahul .
BIOINFORMATICS, 2015, 31 (09) :1515-1518
[4]   Farnesyl Transferase Inhibitors as Potential Anticancer Agents [J].
Bagchi, Sounak ;
Rathee, Parth ;
Jayaprakash, Venkatesan ;
Banerjee, Sugato .
MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2018, 18 (19) :1611-1623
[6]   G protein signaling in the parasite Entamoeba histolytica [J].
Bosch, Dustin E. ;
Siderovski, David P. .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2013, 45 :e15-e15
[7]  
Buckner Frederick S, 2005, Curr Opin Investig Drugs, V6, P791
[8]   Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei [J].
Buckner, FS ;
Yokoyama, K ;
Nguyen, L ;
Grewal, A ;
Erdjument-Bromage, H ;
Tempst, P ;
Strickland, CL ;
Xiao, L ;
Van Voorhis, WC ;
Gelb, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :21870-21876
[9]   Cloning, heterologous expression, and substrate specificities of protein farnesyltransferases from Trypanosoma cruzi and Leishmania major [J].
Buckner, FS ;
Eastman, RT ;
Nepomuceno-Silva, JL ;
Speelmon, EC ;
Myler, PJ ;
Van Voorhis, WC ;
Yokoyama, K .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2002, 122 (02) :181-188
[10]   Chemotherapy of schistosomiasis: present and future [J].
Caffrey, Conor R. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2007, 11 (04) :433-439