A fractional-order multi-scroll hyperchaotic Chua system and its synchronization

被引:0
作者
Xi, Huiling [1 ,2 ]
机构
[1] North Univ China, Dept Math, Taiyuan, Shanxi, Peoples R China
[2] Guangdong Univ Technol, Coll Automat, Guangzhou, Guangdong, Peoples R China
来源
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012) | 2012年
基金
中国国家自然科学基金;
关键词
Chaos synchronization; Fractional-ordersystem; Multi-scroll Chua system; Hyperchaotic system; Linear control; CHAOS SYNCHRONIZATION; PROJECTIVE SYNCHRONIZATION; UNIFIED SYSTEM; BIFURCATION; DYNAMICS; EQUATION; CIRCUIT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a four-dimensional fractional-order multi-scroll hyperchaotic Chua system is proposed. By utilizing the fractional calculus theory and computer simulations, it is found that multi-scroll hyperchaotic attractor exists in this fractional-order Chua system with order less than 4. Furthermore, synchronization between two fractional-order multi-scroll hyperchaotic Chua systems is achieved by a suitable linear controller applied to the response system and the corresponding numerical simulations are performed.
引用
收藏
页码:1436 / 1441
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]  
ARENA P, 2003, NONLINEAR NONINTEGER
[3]   BIFURCATION AND CHAOS IN THE FRACTIONAL-ORDER CHEN SYSTEM VIA A TIME-DOMAIN APPROACH [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (07) :1845-1863
[4]   Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (03) :615-639
[5]   Chaotic dynamics of the fractionally damped van der Pol equation [J].
Chen, Juhn-Horng ;
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 35 (01) :188-198
[6]   A fractional-order hyperchaotic system and its synchronization [J].
Deng, Hongmin ;
Li, Tao ;
Wang, Qionghua ;
Li, Hongbin .
CHAOS SOLITONS & FRACTALS, 2009, 41 (02) :962-969
[7]   The evolution of chaotic dynamics for fractional unified system [J].
Deng, Weihua ;
Li, Changpin .
PHYSICS LETTERS A, 2008, 372 (04) :401-407
[8]  
Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
[9]   Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal [J].
Ge, Zheng-Ming ;
Ou, Chan-Yi .
CHAOS SOLITONS & FRACTALS, 2008, 35 (04) :705-717
[10]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490