Preliminary experimental study on applicability of Lorentz force velocimetry in an external magnetic field

被引:2
作者
Tan, Yan-Qing [1 ,4 ]
Liu, Run-Cong [1 ]
Dai, Shang-Jun [1 ]
Wang, Xiao-Dong [1 ]
Ni, Ming-Jiu [2 ]
Yang, Juan-Cheng [2 ]
Dubovikova, Nataliia [3 ]
Kolesnikov, Yurii [3 ]
Karcher, Christian [3 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 101408, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China
[3] Ilmenau Univ Technol, Inst Thermodynam & Fluid Mech, POB 100565, D-98684 Ilmenau, Germany
[4] Minist Ind & Informat Technol, Elect Res Inst 5, Guangzhou 510610, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lorentz force velocimetry; Electrically conducting fluids; Noncontact measuring technique; External magnetic field;
D O I
10.1007/s41365-018-0426-9
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Lorentz force velocimetry (LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of whether LFV can work properly under a surrounding external magnetic field (ExMF). Two types of ExMFs with different magnetic intensities were examined: a magnetic field with a typical order of 0.4 T generated by a permanent magnet (PM) and another generated by an electromagnet EM) on the order of 2 T. Two forces, including the magnetostatic force between the ExMF and PM in the LFV, and the Lorentz force generated by the PM in LFV were measured and analyzed in the experiment. In addition, ExMFs of varying strengths were added to the LFV, and the location of the LFV device in the iron cores of the EM was considered. The experimental outcomes demonstrate that it is possible for a LFV device to operate normally under a moderate ExMF. However, the magnetostatic force will account for a high proportion of the measured force, thus inhibiting the normal LFV operation, if the ExMF is too high.
引用
收藏
页数:8
相关论文
共 16 条
[1]   Status of the ITER heating neutral beam system [J].
Hemsworth, R. ;
Decamps, H. ;
Graceffa, J. ;
Schunke, B. ;
Tanaka, M. ;
Dremel, M. ;
Tanga, A. ;
De Esch, H. P. L. ;
Geli, F. ;
Milnes, J. ;
Inoue, T. ;
Marcuzzi, D. ;
Sonato, P. ;
Zaccaria, P. .
NUCLEAR FUSION, 2009, 49 (04)
[2]   Progress in the ITER physics basis - Preface [J].
Ikeda, K. .
NUCLEAR FUSION, 2007, 47 (06)
[3]   Plasma-wall interaction issues in ITER [J].
Janeschitz, G .
JOURNAL OF NUCLEAR MATERIALS, 2001, 290 :1-11
[4]   Assessment and selection of materials for ITER in-vessel components [J].
Kalinin, G ;
Barabash, V ;
Cardella, A ;
Dietz, J ;
Ioki, K ;
Matera, R ;
Santoro, RT ;
Tivey, R .
JOURNAL OF NUCLEAR MATERIALS, 2000, 283 :10-19
[5]   Lorentz Force Flowmeter for Liquid Aluminum: Laboratory Experiments and Plant Tests [J].
Kolesnikov, Yurii ;
Karcher, Christian ;
Thess, Andre .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2011, 42 (03) :441-450
[6]   ALTERNATING CURRENT ELECTROMAGNET TYPE HYSTERESIS LOOP TRACER FOR MINERALS AND ROCKS [J].
LIKHITE, SD ;
RADHAKRISHNAMURTY, C ;
SAHASRABUDHE, PW .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1965, 36 (11) :1558-+
[7]  
Minchenya V, 2009, MAGNETOHYDRODYNAMICS, V45, P459
[8]  
Priede J, 2009, MAGNETOHYDRODYNAMICS, V45, P451
[9]   Recent analysis of key plasma wall interactions issues for ITER [J].
Roth, Joachim ;
Tsitrone, E. ;
Loarte, A. ;
Loarer, Th. ;
Counsell, G. ;
Neu, R. ;
Philipps, V. ;
Brezinsek, S. ;
Lehnen, M. ;
Coad, P. ;
Grisolia, Ch. ;
Schmid, K. ;
Krieger, K. ;
Kallenbach, A. ;
Lipschultz, B. ;
Doerner, R. ;
Causey, R. ;
Alimov, V. ;
Shu, W. ;
Ogorodnikova, O. ;
Kirschner, A. ;
Federici, G. ;
Kukushkin, A. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :1-9
[10]  
Shercliff J.A., 1962, THEORY ELECTROMAGNET