Artificial neural network modeling of atmospheric corrosion in the MICAT project

被引:73
|
作者
Pintos, S
Queipo, NV
de Rincón, OT
Rincón, A
Morcillo, R
机构
[1] Natl Ctr Met Res, Madrid 28040, Spain
[2] Univ Zulia, Coll Engn, Appl Comp Inst, Maracaibo 4005, Zulia, Venezuela
[3] Univ Zulia, Coll Engn, Ctr Corros Studies, Maracaibo 4005, Zulia, Venezuela
关键词
steel; modeling studies; atmospheric corrosion;
D O I
10.1016/S0010-938X(99)00054-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an Artificial Neural Network(ANN)-based solution methodology for modeling atmospheric corrosion processes from observed experimental values, and an ANN model developed using the cited methodology for the prediction of the corrosion rate of carbon steel in the context of the Iberoamerican Corrosion Map (MICAT) Project, which includes seventy-two test sites in fourteen countries throughout Iberoamerica. The ANN model exhibited superior performance in terms of goodness of fit (sum of square errors) and residual distributions when compared against a classical regression model also developed in the context of this study, and is expected to provide reasonable corrosion rates for a variety of climatological and pollution conditions. Furthermore, the proposed methodology holds promise to be an effective and efficient tool for the construction of analytical models associated with corrosion processes of other metals in the context of the MICAT project, and, in general, in the modeling of corrosion phenomena from experimental data. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 50 条
  • [41] Neural network modeling of thin carbon layer
    Szota, Michal
    Jasinski, Jozef
    Nabialek, Marcin
    OPTICA APPLICATA, 2009, 39 (04) : 807 - 813
  • [42] Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial neural networks
    Shi, Jiangbo
    Wang, Jihui
    Macdonald, Digby D.
    CORROSION SCIENCE, 2015, 92 : 217 - 227
  • [43] Insights from electrochemical crack tip modeling of atmospheric stress corrosion cracking
    Katona, R. M.
    Burns, J. T.
    Schaller, R. F.
    Kelly, R. G.
    CORROSION SCIENCE, 2022, 209
  • [44] Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models
    Tao, Zhi-Jun
    Yang, He
    Li, Heng
    Ma, Jun
    Gao, Peng-Fei
    RARE METALS, 2016, 35 (02) : 162 - 171
  • [45] Artificial neural networks for machining processes surface roughness modeling
    Pontes, Fabricio J.
    Ferreira, Joao R.
    Silva, Messias B.
    Paiva, Anderson P.
    Balestrassi, Pedro Paulo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 49 (9-12) : 879 - 902
  • [46] Handling Incomplete and Missing Data in Corrosion Pit Measurement Database Using Imputation Methods: Model Development Using Artificial Neural Network
    Woldesellasse, Haile
    Tesfamariam, Solomon
    JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE, 2021, 12 (03)
  • [47] Estimating the crashworthiness performances of crushboxes using artificial neural network
    Kocar, O.
    Adanur, O.
    Varol, F.
    Guldibi, A. S.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2025, 56 (01) : 95 - 109
  • [48] Prediction of the Thickness of a Boroaluminized Layer Using an Artificial Neural Network
    Mishigdorzhiyn, U. L.
    Dyshenov, B. A.
    Semenov, A. P.
    Ulakhanov, N. S.
    Markhadayev, B. E.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (02): : 466 - 473
  • [49] Using an Artificial Neural Network Approach to Predict Machining Time
    Rodrigues, Andre
    Silva, Francisco J. G.
    Sousa, Vitor F. C.
    Pinto, Arnaldo G.
    Ferreira, Luis P.
    Pereira, Teresa
    METALS, 2022, 12 (10)
  • [50] ARTIFICIAL NEURAL NETWORK USAGE FOR DETERMINING SOLIDUS TEMPERATURE OF STEELS
    Machu, Mario
    Drozdova, L'ubomira
    Smetana, Bedrich
    Zla, Simona
    Kawulokova, Monika
    28TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2019), 2019, : 48 - 53